Abstract
Our goal is to present approximation theorems for sequences of positive linear operators defined on \(C(X)\), where \(X\) is a compact metric space. Instead of the uniform convergence we use the statistical convergence. Examples and special cases are also provided.
Authors
Octavian Agratini
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
Bohman-Korovkin theorem, positive linear operators, statistical convergence, approximation process.
Paper coordinates
O. Agratini, On statistical approximation in spaces of continuous functions, Positivity, 13 (2009), pp. 735-743, https://doi.org/10.1007/s11117-008-3002-4
subscription required: https://doi.org/10.1007/s11117-008-3002-4
About this paper
Print ISSN
Online ISSN
1385-1292
google scholar link
References
-
A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(1) (2002), 129–138. Google Scholar
-
O. Doğru, O. Duman, C. Orhan, Statistical approximation by generalized Meyer–König and Zeller type operators, Stud. Sci. Math. Hung., 40 (2003), 359–371. Google Scholar
-
O. Duman, Statistical approximation for periodic functions, Demonstr. Math., 36(4) (2003), 873–878.
-
O. Duman, Statistical approximation theorems by k-positive linear operators, Arch. Math., 86 (2006), 569–576. Google Scholar
-
O. Duman, C. Orhan, An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen, 69(1–2) (2006), 33–46.
-
E. Erkuş, O. Duman, H.M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan–Chyan-Srivastava polynomials, Appl. Math. Comput., 182 (2006), 213–222. Google Scholar
-
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244. Google Scholar
-
T.H. Hildebrandt, I.J. Schoenberg, On linear functional operations and the moment problem, Ann. of Math., 34(2) (1933), 317–328. Google Scholar
-
F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter and Co., Berlin, (1994).
-
R. Schnabl, Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74–82.
-
F. Altomare, V. Leonessa, S. Milella, Continuous selections of Borel measures and Bernstein–Schnabl operators, In: Proceedings of the International Conference on Numerical Analysis and Approximation Theory, Cluj-Napoca, Romania, July 5–8, 2006, pp. 1–26, Agratini, O., Blaga, P. (eds) Casa Cărţii de Ştiinţă, Cluj-Napoca, (2006).
-
D. Andrica, C. Mustăţa, An abstract Korovkin type theorem and applications, Stud. Univ. Babeş-Bolyai Math. 34(2) (1989), 44–51.