On statistical approximation in spaces of continuous functions

Abstract

Our goal is to present approximation theorems for sequences of positive linear operators defined on \(C(X)\), where \(X\) is a compact metric space. Instead of the uniform convergence we use the statistical convergence. Examples and special cases are also provided.

Authors

Octavian Agratini
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Bohman-Korovkin theorem, positive linear operators, statistical convergence, approximation process.

Paper coordinates

O. Agratini, On statistical approximation in spaces of continuous functions, Positivity, 13 (2009), pp. 735-743, https://doi.org/10.1007/s11117-008-3002-4

PDF

About this paper

Journal

Positivity

Publisher Name

Springer

Print ISSN
1572-9281
Online ISSN

1385-1292

google scholar link

References

  1. A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(1) (2002), 129–138. Google Scholar

  2. O. Doğru, O. Duman, C. Orhan, Statistical approximation by generalized Meyer–König and Zeller type operators, Stud. Sci. Math. Hung., 40 (2003), 359–371. Google Scholar

  3. O. Duman, Statistical approximation for periodic functions, Demonstr. Math., 36(4) (2003), 873–878.

  4. O. Duman, Statistical approximation theorems by k-positive linear operators, Arch. Math., 86 (2006), 569–576. Google Scholar

  5. O. Duman, C. Orhan, An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen, 69(1–2) (2006), 33–46.

  6. E. Erkuş, O. Duman, H.M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan–Chyan-Srivastava polynomials, Appl. Math. Comput., 182 (2006), 213–222. Google Scholar

  7. H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244. Google Scholar

  8. T.H. Hildebrandt, I.J. Schoenberg, On linear functional operations and the moment problem, Ann. of Math., 34(2) (1933), 317–328. Google Scholar

  9. F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter and Co., Berlin, (1994).

  10. R. Schnabl, Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74–82.

  11. F. Altomare, V. Leonessa, S. Milella, Continuous selections of Borel measures and Bernstein–Schnabl operators, In: Proceedings of the International Conference on Numerical Analysis and Approximation Theory, Cluj-Napoca, Romania, July 5–8, 2006, pp. 1–26, Agratini, O., Blaga, P. (eds) Casa Cărţii de Ştiinţă, Cluj-Napoca, (2006).

  12. D. Andrica, C. Mustăţa, An abstract Korovkin type theorem and applications, Stud. Univ. Babeş-Bolyai Math. 34(2) (1989), 44–51.

2009

Related Posts