On statistical approximation in spaces of continuous functions


Our goal is to present approximation theorems for sequences of positive linear operators defined on \(C(X)\), where \(X\) is a compact metric space. Instead of the uniform convergence we use the statistical convergence. Examples and special cases are also provided.


Octavian Agratini
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania


Bohman-Korovkin theorem, positive linear operators, statistical convergence, approximation process.

Paper coordinates

O. Agratini, On statistical approximation in spaces of continuous functions, Positivity, 13 (2009), pp. 735-743, https://doi.org/10.1007/s11117-008-3002-4


About this paper



Publisher Name


Print ISSN
Online ISSN


google scholar link


  1. A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(1) (2002), 129–138. Google Scholar

  2. O. Doğru, O. Duman, C. Orhan, Statistical approximation by generalized Meyer–König and Zeller type operators, Stud. Sci. Math. Hung., 40 (2003), 359–371. Google Scholar

  3. O. Duman, Statistical approximation for periodic functions, Demonstr. Math., 36(4) (2003), 873–878.

  4. O. Duman, Statistical approximation theorems by k-positive linear operators, Arch. Math., 86 (2006), 569–576. Google Scholar

  5. O. Duman, C. Orhan, An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen, 69(1–2) (2006), 33–46.

  6. E. Erkuş, O. Duman, H.M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan–Chyan-Srivastava polynomials, Appl. Math. Comput., 182 (2006), 213–222. Google Scholar

  7. H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244. Google Scholar

  8. T.H. Hildebrandt, I.J. Schoenberg, On linear functional operations and the moment problem, Ann. of Math., 34(2) (1933), 317–328. Google Scholar

  9. F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter and Co., Berlin, (1994).

  10. R. Schnabl, Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74–82.

  11. F. Altomare, V. Leonessa, S. Milella, Continuous selections of Borel measures and Bernstein–Schnabl operators, In: Proceedings of the International Conference on Numerical Analysis and Approximation Theory, Cluj-Napoca, Romania, July 5–8, 2006, pp. 1–26, Agratini, O., Blaga, P. (eds) Casa Cărţii de Ştiinţă, Cluj-Napoca, (2006).

  12. D. Andrica, C. Mustăţa, An abstract Korovkin type theorem and applications, Stud. Univ. Babeş-Bolyai Math. 34(2) (1989), 44–51.


Related Posts