On the approximations of continuous functions of a real variable by polynomials

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur les l’approximations des fonctions continues d’une variable réelle par des polynomes, Ann. Sci. Univ. Iassy, 28 (1942) p. 208 (in French).

PDF

About this paper

Journal

Ann. Sci. Univ. Iassy

Publisher Name
DOI
Print ISSN
Online ISSN

[MR0018270]

google scholar link

??

Paper (preprint) in HTML form

1942-a-176-Popoviciu-Ann.-Sci.-Univ.-Jassy-Sur-lapproximations-des-fonctions-continues-dune-variable
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE APPROXIMATION OF CONTINUOUS FUNCTIONS OF A REAL VARIABLE BY POLYNOMIES

by

TIBERIU POPOVICIU

In a previous work 1 1 ^(1){ }^{1}1) we have shown that the MS Bernstein polynomials
P n ( x ; f ) = i = 0 n f ( i n ) ( n i ) x i ( 1 x ) n i P n ( x ; f ) = i = 0 n f i n ( n i ) x i ( 1 x ) n i P_(n)(x;f)=sum_(i=0)^(n)f((i)/(n))((n)/(i))x^(i)(1-x)^(ni)P_{n}(x ; f)=\sum_{i=0}^{n} f\left(\frac{i}{n}\right)\binom{n}{i} x^{i}(1-x)^{ni}Pn(x;f)=i=0nf(in)(ni)xi(1x)ni
give, for the function f ( x ) f ( x ) f(x)f(x)f(x)continues in the closed interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], an approximation of the order of ω ( 1 n ) ω 1 n omega((1)/(sqrtn))\omega\left(\frac{1}{\sqrt{n}}\right)ω(1n)if ω ( δ ) ω ( δ ) omega (delta)omega(delta)ω(δ)is the oscillation modulus of f ( x ) f ( x ) f(x)f(x)f(x)Here is a simpler demonstration of this result.
If we notice that i = 0 n ( n i ) x i ( 1 x ) n i = 1 i = 0 n ( n i ) x i ( 1 x ) n i = 1 sum_(i=0)^(n)((n)/(i))x^(i)(1-x)^(ni)=1\sum_{i=0}^{n}\binom{n}{i} x^{i}(1-x)^{ni}=1i=0n(ni)xi(1x)ni=1the known properties of ω ( δ ) ω ( δ ) omega (delta)omega(delta)ω(δ)give us
| f ( x ) P n ( x ; f ) | ( 1 δ i = 0 n | x i n | ( n i ) x i ( 1 x ) n i + 1 ) ω { δ } , x [ 0 , 1 ] . f ( x ) P n ( x ; f ) 1 δ i = 0 n x i n ( n i ) x i ( 1 x ) n i + 1 ω { δ } , x [ 0 , 1 ] . |f(x)-P_(n)(x;f)| <= ((1)/(delta)sum_(i=0)^(n)|x-(i)/(n)|((n)/(i))x^(i)(1-x)^(ni)+1)omega{delta},quad x in[0,1].\left|f(x)-P_{n}(x ; f)\right| \leq\left(\frac{1}{\delta} \sum_{i=0}^{n}\left|x-\frac{i}{n}\right|\binom{n}{i} x^{i}(1-x)^{ni}+1\right) \omega\{\delta\}, \quad x \in[0,1] .|f(x)Pn(x;f)|(1δi=0n|xin|(ni)xi(1x)ni+1)ω{δ},x[0,1].
But we have, by applying a well-known inequality,
i = 0 n | x i n | ( n i ) x i ( 1 x ) n i i = 0 n ( x i n ) 2 ( n i ) x i ( 1 x ) n i = = x ( 1 x ) n 1 2 n , x [ 0 , 1 ] i = 0 n x i n ( n i ) x i ( 1 x ) n i i = 0 n x i n 2 ( n i ) x i ( 1 x ) n i = = x ( 1 x ) n 1 2 n , x [ 0 , 1 ] {:[sum_(i=0)^(n)|x-(i)/(n)|((n)/(i))x^(i)(1-x)^(ni) <= sqrt(sum_(i=0)^(n)(x-(i)/(n))^(2)((n)/(i))^(x^(i)(1-x)^(ni)))=],[=sqrt((x(1-x))/(n)) <= (1)/(2sqrtn)","quad x in[0","1]]:}\begin{gathered} \sum_{i=0}^{n}\left|x-\frac{i}{n}\right|\binom{n}{i} x^{i}(1-x)^{ni} \leq \sqrt{\sum_{i=0}^{n}\left(x-\frac{i}{n}\right)^{2}\binom{n}{i}^{x^{i}(1-x)^{ni}}}= \\ =\sqrt{\frac{x(1-x)}{n}} \leq \frac{1}{2 \sqrt{n}}, \quad x \in[0,1] \end{gathered}i=0n|xin|(ni)xi(1x)nii=0n(xin)2(ni)xi(1x)ni==x(1x)n12n,x[0,1]
By taking δ = 1 n δ = 1 n delta = (1)/(sqrtn)\delta=\frac{1}{\sqrt{n}}δ=1n, We have
| f ( x ) P n ( x ; f ) | 3 2 ω ( 1 n ) f ( x ) P n ( x ; f ) 3 2 ω 1 n |f(x)-P_(n)(x;f)| <= (3)/(2)omega((1)/(sqrtn))\left|f(x)-P_{n}(x ; f)\right| \leq \frac{3}{2} \omega\left(\frac{1}{\sqrt{n}}\right)|f(x)Pn(x;f)|32ω(1n)
which demonstrates ownership.

    1. Tiberiu Popoviciu. "On the approximation of higher-order convex functions" Mathematica, 10, 49-54, (1934).
1942

Related Posts