On the behavior of a thin liquid layer flowing due to gravity and a surface tension gradient

Abstract

A thin liquid layer flowing due to gravity and a surface tension gradient are taken into account. On the liquid/gas interface one of the boundary conditions reduces to the fact that the normal stress equals the atmospheric pressure.

This is the main difference between our study and those where the same boundary condition expresses the fact that the normal stress is proportional to the curvature.  In these, by using the  standard lubrication theory, a fourth-order nonlinear parabolic equation for the fluid film height is  obtained.

In ours, by using the same theory, a nonlinear conservation law with a noncovex flux function is deduced for the same variable. For this equation a  similarity solution is carried out. It shows that the behavior of the liquid layer depends essentially  upon the gradient of surface tension and is quite insensitive to the viscosity of the liquid.

“Viscous” and weak formulations for the conservation law are also carried out. An entropy condition to pick out physically relevant weak solutions is used.

Authors

C.I. Gheorghiu
Tiberiu Popoviciu Institute of Numerical Analysis

Keywords

Marangoni flow; normal stress; atmospheric pressure; nonlinear conservation law; non-convex flux; similarity solution; entropy condition;

References

See the expanding block below.

Cite this paper as

C.I. Gheorghiu, On the behavior of a thin liquid layer flowing due to gravity and a surface tension gradient, I. Mathematical aspects, Studia Univ. Babeş-Bolyai Math., XLI (1996) 47-54.

PDF

?

About this paper

Publisher Name

Babes-Bolyai University

Print ISSN

0252-1938

Online ISSN

2065-961x

MR

?

ZBL

?

Google Scholar

?

1996

Related Posts