On the conservation by the interpolation polynomial of L. Féjer, of the sign or the monotonicity of the function

Abstract

Authors

T. Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Sur la conservation par le polynome d’interpolation de L. Féjer, du signe ou de la monotonie de la fonction, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I (N.S.) 8 (1962), pp. 65-84 (in French).

PDF

About this paper

Journal

Analele Stiintifice al Universitatii Al. I. Cuza Iasi

Publisher Name

Al. I. Cuza University Iasi, Romania

DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE PRESERVATION, BY L. FEJÉR'S INTERPOLATION POLYNOME, OF THE SIGN OR MONOTONY OF THE FUNCTION

BY
TIBERIU POPOVICIU
in Cluj

§ 1. Preservation of the sign of the function

  1. 1.

    Let

x1<x2<<xnx_{1}<x_{2}<\ldots<x_{n} (1)

n(2)n(\geqslant 2)points on the real axis,f=f(x)f=f(x)a real function of the real variablexx, defined on a linear setEEcontaining the points (1) and consider the interpolation polynomial

F[f|x]=i=1nf(xi)htF[f\mid x]=\sum_{i=1}^{n}f\left(x_{i}\right)h_{t} (2)

corresponding to the functionffon the (interpolation) nodes (1).
The polynomial (2) (of L. Fejér) is the first term of the Lagrange-Hermite polynomial

H[f|x]=i=1nf(xi)hi+i=1nf(xi)ktH[f\mid x]=\sum_{i=1}^{n}f\left(x_{i}\right)h_{i}+\sum_{i=1}^{n}f^{\prime}\left(x_{i}\right)k_{t} (3)

degree2n12n-1taking, with the functionffand its derivativeff^{\prime}the same values ​​on the nodes.

In (3) thehih_{i}are the fundamental interpolation polynomials of the first and thekik_{i}The fundamental interpolation polynomials of the second kind corresponding to the nodes (1). These polynomials are given by the formulas

Several authors, especially L. Fejér [1], have studied cases, very important for the convergence of interpolation polynomial sequences, where the polynomials (4) are non-negative on a certain intervalII.

In this first\intWe reproduce, with some additions, the results of L. Fejér [1]. We also revisit the cases where the nodes are the roots of the classical orthogonal polynomials of Jacobi, Laguerre and Hermite considered by L. Fejér [1] and G. Szegö [4].

These results are useful for better highlighting the properties that we will study in§2\S 22.
EitherIIan arbitrary interval. We say that the interpolation polynomialF[f|x]F[f\mid x]preserves the sign of the function (more precisely: preserves the sign of the function)ffon the intervalII) if it is non-negative onIIfor any functionff, non-negative on points (1). This is always the case ifIIreduces to a node. If the intervalIIis non-zero 1 ) or if it reduces to a point other than a node, so thatF[f|x]F[f\mid x]preserves the sign of the function; it is necessary and sufficient that linear functions

vi=1L"(xi)L(xi)(xxi),i=1,2,,nv_{i}=1-\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}\left(x-x_{i}\right),\quad i=1,2,\ldots,n (7)

be non-negative onLLOtherwise, we say that the interpolation polynomialF[f|x]F[f\mid x]does not preserve the sign of the function (more precisely: does not preserve the sign of the functionffon the intervalII). In this case, there is at least one point ofIIon which at least one of the polynomials (7) takes a negative value.

The well-known formula

i=1nhi=1\sum_{i=1}^{n}h_{i}=1 (8)

This shows us that the polynomials (4) cannot all vanish at the same point. It follows that ifF[f|x]F[f\mid x]preserves the sign of the function; it is also positive onIIfor any positive function at the points (1). It is easy to see that, under the same hypothesis, the polynomialF[f|x]F[f\mid x]is non-positive respectively negative onIIfor any function-

0 0 footnotetext: 1. Therefore, it has a non-zero length. Similarly, we say that the interval is zero if it reduces to a single point.
hi=[L(x)(xxi)L(xi)]2[1L"(xi)L(xi)(xxi)],i=1,2,,n\displaystyle h_{i}=\left[\frac{l(x)}{\left(x-x_{i}\right)l^{\prime}\left(x_{i}\right)}\right]^{2}\left[1-\frac{l^{\ prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}\left(x-x_{i}\right)\right],i=1,2,\ldots,n (4)
ki=[L(x)(xxi)L(xi)]2(xxi),i=1,2,,n\displaystyle k_{i}=\left[\frac{l(x)}{\left(x-x_{i}\right)l^{\prime}\left(x_{i}\right)}\right]^{2}\left(x-x_{i}\right),\quad i=1,2,\ldots,n (5)
L(x)=(xx1)(xx2)(xxn).\displaystyle l(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\ldots\left(x-x_{n}\right). (Or)

ttonffnon-positive and negative respectively at points (1). This is, of course, an intervalIInon-zero. More simply, we could say that if the interpolation polynomialF[f|x]F[f\mid x]If it preserves non-negativity, then it also preserves the non-positivity, positivity, and negativity of the function.
3. The important notion of conjugate points of the nodes, introduced by L. Fejér, allows for a complete discussion of the conservation problem using the polynomial.F[f|x]F[f\mid x], of the sign of the function.

The conjugate points of the nodes (1) are the points

Xi=xi+L(xi)Ln(xi),i=1,2,,nX_{i}=x_{i}+\frac{l^{\prime}\left(x_{i}\right)}{l^{n}\left(x_{i}\right)},i=1,2,\ldots,n (6)

XLX_{l}being the conjugate of the pointxL1x_{l}{}^{1}
The point XiX_{i}exists ifL"(xi)0l^{\prime\prime}\left(x_{i}\right)\neq 0. IfL"(xi)=0l^{\prime\prime}\left(x_{i}\right)=0we can takeXi==+X_{i}==+\inftyand then all the following results remain valid when operating with the improper number++\inftyas is usual in mathematical analysis.

The pointXiX_{i}never coincides withxix_{i}Inequality
vi0v_{i}\geqq 0onIIis equivalent to inequality

(Xixi)(Xix)0 on I.\left(X_{i}-x_{i}\right)\left(X_{i}--x\right)\geqq 0\text{ on }I.

We have

L"(xi)L(xi)=2j=1n1xixj,i=1,2,,n\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}=2\sum_{j=1}^{n}\frac{1}{x_{i}-x_{j}},i=1,2,\ldots,n (10)

where the accent' at the signd\sum_{d}^{\prime}means that the valueiiof the indexjjis excluded.
From inequalities (1) and (10) it follows that

L"(x1)L(x1)<0,L"(xn)L(xn)>0\frac{l^{\prime\prime}\left(x_{1}\right)}{l^{\prime}\left(x_{1}\right)}<0,\frac{l^{\prime\prime}\left(x_{n}\right)}{l^{\prime}\left(x_{n}\right)}>0

so alsoX1<x1,Xn>xnX_{1}<x_{1},X_{n}>x_{n}The pointsX1,XnX_{1},X_{n}are finished and we haveI[X1,Xn]I\subseteq\left[X_{1},X_{n}\right]if the polynomialF[f|x]F[f\mid x]preserves the sign of the function over the intervalII.

In particular, the interpolation polynomialF[f|x]F[f\mid x]does not preserve the sign of the function over any infinite interval.

This property also results from formula (8) and the fact that none of the polynomials (4) reduces to a constant ( 2 ). Indeed, at least one of these polynomials must tend towards++\inftyand at least one towards-\inftywhenx+x\rightarrow+\inftyOrxx\rightarrow-\infty.

0 0 footnotetext: 1) Where (1) are the roots of the Chebyshev polynomialcos(narccosx)\cos(n\arccos x)the pointsxi,Xi(=1xi)x_{i},X_{i}\left(=\frac{1}{x_{i}}\right)are harmonically conjugate with respect to the points1,1-1,1.
{}^{\text{2 }}) Only from (8) and from the fact that at least one of the polynomials (4) does not reduce

4. IfL"(xi)=0l^{\prime\prime}\left(x_{i}\right)=0we havevi=1>0v_{i}=1>0for everythingxxLet pi1,i2,,iki_{1},i_{2},\ldots,i_{k}the index valuesiifor whichL"(xi)L(x)<0\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}(x)}<0and byj1,j2,,jmj_{1},j_{2},\ldots,j_{m}the index valuesiifor whichL"(xi)L(xi)>0\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}>0. We havek+mnk+m\leqq nAccording to (11) such indices exist (thereforek1,m1k\geqq 1,m\geqq 1This can also be seen by noting thati=1nL"(xi)L(xi)=0\sum_{i=1}^{n}\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}=0and thatL"(xi),i=1,2,,nl^{\prime\prime}\left(x_{i}\right),i=1,2,\ldots,ncannot all be zero 1 ).

Two cases can then arise:
4.1. We have

XirXjs,r=1,2,,k,s=1,2,,mX_{i_{r}}\leqq X_{j_{s}},r=1,2,\ldots,k,s=1,2,\ldots,m

So thatF[f|x]F[f\mid x]preserves the sign of the function over the intervalIIIt is necessary and sufficient that we haveI[Z,Z+]I\subseteq\left[Z^{-},Z^{+}\right]Or

Z=maxr=1,2,kXir,Z+=mins=1,2,,mXjsZ^{-}=\max_{r=1,2\ldots,k}X_{i_{r}},\quad Z^{+}=\min_{s=1,2,\ldots,m}X_{j_{s}}

The largest interval (assumed non-zero) on which the polynomialF[f|x]F[f\mid x]preserves the sign of the function is the interval[Z,Z+]\left[Z^{-},Z^{+}\right].

In the case of nodes1,13,13,1(n=4)-1,-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},1(n=4)We haveZ==Z+=0Z^{-}==Z^{+}=0, which does not coincide with a node, and in the case of nodes1,12,0,12,1(n=5)-1,-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},1(n=5)we still haveZ=Z+=0Z^{-}=Z^{+}=0, which coincides with a node.
4.2. There is an indexrrand a cluesssuch as

Xtr>XJs.X_{t_{r}}>X_{J_{s}}. (12)

In this case, there is no intervalII, not reducing to a knot, on which the polynomialF[f|x]F[f\mid x]preserves the sign of the function,
5. If the intervalIIis finite, which can always be assumed to be closed, but arbitrary, the results of L. Fejér show us that the preservation of the sign can indeed take place. This is the case if the nodes (1) are normally distributed with respect to the intervalII. IfI=[has,b]I=[a,b],has<ba<b, we say that the nodes (1) are normally distributed with respect toII, if all the pointsxix_{i}belong to the intervalIIand all the conjugate pointsXiX_{i}are outside the (open) interval (has,ba,b). It is easy to see that, in this case, the polynomialF[f|x]F[f\mid x]preserves the sign of the function onII.

0 0 footnotetext: 1 ) Because the polynomialL"l^{\prime\prime}is of degreen2n-2and not identically zero.

We can also obtain a somewhat opposite result.
We have property
I. Ifn4n\geq 4, we can construct systems of nodes (1) such that e interpolation polynomialF[f|x]F[f\mid x]does not preserve the sign of the function over any intervalII, null or not, and not reducing to a knot.

This property is a consequence of
Lemma 1. Ifn4n\geqq 4and if the nodes (1) satisfy the inequalities
(13)

x2x1x3x2n1,xnxn1xn1xn2n1x_{2}-x_{1}\leqq\frac{x_{3}-x_{2}}{n-1},x_{n}-x_{n-1}\leqq\frac{x_{n-1}-x_{n-2}}{n-1}

the interpolation polynomialF[f|x]F[f\mid x]does not preserve the sign of the function over any intervalII, null or not, and not reducing to a knot.

By virtue of inequalities (1) and (13), we have

12L"(x2)L(x2)=\displaystyle\frac{1}{2}\cdot\frac{l^{\prime\prime}\left(x_{2}\right)}{l^{\prime}\left(x_{2}\right)}= 1x2x1i=3n1xix2>1x2x1n2x3x2\displaystyle\frac{1}{x_{2}-x_{1}}-\sum_{i=3}^{n}\frac{1}{x_{i}-x_{2}}>\frac{1}{x_{2}-x_{1}}-\frac{n-2}{x_{3}-x_{2}}\geqq
n1x3x2n2x3x2=1x3x2>0\displaystyle\geqq\frac{n-1}{x_{3}-x_{2}}-\frac{n-2}{x_{3}-x_{2}}=\frac{1}{x_{3}-x_{2}}>0 (14)

SOL"(x2)L(x2)>2x3x2>0\frac{l^{\prime\prime}\left(x_{2}\right)}{l^{\prime}\left(x_{2}\right)}>\frac{2}{x_{3}-x_{2}}>0Similarly, we see that

Ln(xn1)L(xn1)<2xn1xn2<0\frac{l^{n}\left(x_{n-1}\right)}{l^{\prime}\left(x_{n-1}\right)}<\frac{-2}{x_{n-1}-x_{n-2}}<0

It follows that it suffices to demonstrate the corresponding inequality (12), therefore inequality
(15)

Xn1>X2.X_{n-1}>X_{2}.

From (14) we deduce that
therefore

2x3x2L"(x2)L(x2)<2x3x22x3x2=0\frac{2}{x_{3}-x_{2}}-\frac{l^{\prime\prime}\left(x_{2}\right)}{l^{\prime}\left(x_{2}\right)}<\frac{2}{x_{3}-x_{2}}-\frac{2}{x_{3}-x_{2}}=0
x3x22L(x2)L"(x2)>0\frac{x_{3}-x_{2}}{2}-\frac{l^{\prime}\left(x_{2}\right)}{l^{\prime\prime}\left(x_{2}\right)}>0 (16)

and it is demonstrated in the same way that

xn1xn22+L(xn1)L"(xn1)>0.\frac{x_{n-1}-x_{n-2}}{2}+\frac{l^{\prime}\left(x_{n-1}\right)}{l^{\prime\prime}\left(x_{n-1}\right)}>0. (17)

Taking into account (1), (16) and (17), we have

Xn1X2=xn1x2+L(xn1)L"(xn1)L(x2)L"(x2)=xn1+xn2x3x22++[x3x22L(x2)L"(x2)]+[xn1xn22+L(xn1)L"(xn1)]>0,\begin{gathered}X_{n-1}-X_{2}=x_{n-1}-x_{2}+\frac{l^{\prime}\left(x_{n-1}\right)}{l^{\prime\prime}\left(x_{n-1}\right)}-\frac{l^{\prime}\left(x_{2}\right)}{l^{\prime\prime}\left(x_{2}\right)}=\frac{x_{n-1}+x_{n-2}-x_{3}-x_{2}}{2}+\\ +\left[\frac{x_{3}-x_{2}}{2}-\frac{l^{\prime}\left(x_{2}\right)}{l^{\prime\prime}\left(x_{2}\right)}\right]+\left[\frac{x_{n-1}-x_{n-2}}{2}+\frac{l^{\prime}\left(x_{n-1}\right)}{l^{\prime\prime}\left(x_{n-1}\right)}\right]>0,\end{gathered}

which demonstrates inequality (15), therefore Lemma 1.6
. The property studied above is not true forn=2n=2and forn==3n==3In these cases, intervals always exist.II, non-zero, on which the interpolation polynomialF[f|x]F[f\mid x]preserves the sign of the function.
Q.1. Forn=2n=2, We have

X1=x1x2x12,X2=x2+x2x12X_{1}=x_{1}-\frac{x_{2}-x_{1}}{2},\quad X_{2}=x_{2}+\frac{x_{2}-x_{1}}{2}

and the diaterpolation polynomialF[f|x]F[f\mid x]preserves the sign of the function over the intervalIIif and only ifI[X1,X2]I\subseteq\left[X_{1},X_{2}\right]6.2
. Forn=3n=3The discussion is a bit more complicated and depends on the parameterϱ=x2x1x3x1\varrho=\frac{x_{2}-x_{1}}{x_{3}-x_{1}}which remains between 0 and1(0<ϱ<1)1(0<\varrho<1). We have

X1=x1x2x12(1+ϱ),X3=x3+x3x22(2ϱ)\displaystyle X_{1}=x_{1}-\frac{x_{2}-x_{1}}{2(1+\varrho)},X_{3}=x_{3}+\frac{x_{3}-x_{2}}{2(2-\varrho)}
X2=x2+1ϱ2(12ϱ)(x2x1)=x2ϱ2(2ϱ1)(x3x2);(ϱ12),\displaystyle X_{2}=x_{2}+\frac{1-\varrho}{2(1-2\varrho)}\left(x_{2}-x_{1}\right)=x_{2}-\frac{\varrho}{2(2\varrho-1)}\left(x_{3}-x_{2}\right);\left(\varrho\neq\frac{1}{2}\right),
X2=+(ϱ=12),\displaystyle X_{2}=+\infty\left(\varrho=\frac{1}{2}\right),

and we deduce that the interpolation polynomialF[f|x]F[f\mid x]preserves the sign of the function over the intervalIIif and only if:
6.2.1.I[X1,X3]I\subseteq\left[X_{1},X_{3}\right]whenϱ=12\varrho=\frac{1}{2}
6.2.2 . I[X1,min(X2,X3)]I\subseteq\left[X_{1},\min\left(X_{2},X_{3}\right)\right]whene<12e<\frac{1}{2}In this case we haveX1<X2,X1<X3X_{1}<X_{2},X_{1}<X_{3}and we haveX2<X_{2}<, =, respectively>X3>X_{3}depending onϱ<,=\varrho<,=, respectively>7265(=0,420)>\frac{7-2\sqrt{6}}{5}(=0,420\ldots)6.2.3
. I[max(X1,X2),X3]\subseteq\left[\max\left(X_{1},X_{2}\right),X_{3}\right]whenϱ>12\varrho>\frac{1}{2}In this case we haveX1<X3,X2<X3X_{1}<<X_{3},X_{2}<X_{3}and we haveX1<X_{1}<, =, respectively>X2>X_{2}depending onϱ>,=\varrho>,=, respectively<2625(=0,579)<\frac{2\sqrt{6}-2}{5}(=0,579\ldots)6.3
Let us also consider the casen=4n=4, the nodes being symmetrically distributed with respect to a certain point on the real axis, therefore assuming thatx2+x3=x1+x4x_{2}+x_{3}=x_{1}+x_{4}In this case, we can already see the various circumstances that can arise. The discussion depends on the parameter.τ=x3x2x2x1=x3x2x4x3\tau=\frac{x_{3}-x_{2}}{x_{2}-x_{1}}=\frac{x_{3}-x_{2}}{x_{4}-x_{3}}, which remains positive. If we askx2x1=ux_{2}-x_{1}=u, We havex3x2=τu,x4x3=ux_{3}-x_{2}=\tau u,x_{4}-x_{3}=uAnd

X1=x1u(τ+1)(τ+2)2(τ2+5τ+5),X2=x2+uτ(τ+1)2(τ2τ1)\displaystyle X_{1}=x_{1}-\frac{u(\tau+1)(\tau+2)}{2\left(\tau^{2}+5\tau+5\right)},X_{2}=x_{2}+\frac{u\tau(\tau+1)}{2\left(\tau^{2}-\tau-1\right)}
X3=x3uτ(τ+1)2(τ2τ1),X4=x4+u(τ+1)(τ+2)2(τ2+5τ+5)\displaystyle X_{3}=x_{3}-\frac{u\tau(\tau+1)}{2\left(\tau^{2}-\tau-1\right)},\quad X_{4}=x_{4}+\frac{u(\tau+1)(\tau+2)}{2\left(\tau^{2}+5\tau+5\right)}

We deduce from this

X2X1=u2τ2(τ+2)25τ(τ+2)6(τ2τ1)(τ2+5τ+5)X4X2=u(τ+1)τ2(τ+2)27τ(τ+2)6(τ2τ1)(τ2+5τ+5)\begin{gathered}X_{2}-X_{1}=u\frac{2\tau^{2}(\tau+2)^{2}-5\tau(\tau+2)-6}{\left(\tau^{2}-\tau-1\right)\left(\tau^{2}+5\tau+5\right)}\\ X_{4}-X_{2}=u(\tau+1)\frac{\tau^{2}(\tau+2)^{2}-7\tau(\tau+2)-6}{\left(\tau^{2}-\tau-1\right)\left(\tau^{2}+5\tau+5\right)}\end{gathered}
X3X2=uττ22τ2τ2τ1.X_{3}-X_{2}=u\tau\frac{\tau^{2}-2\tau-2}{\tau^{2}-\tau-1}.

If we ask

τ1=9+7321=1,094τ2=9+7321=1,961τ3=1+3=2,732\begin{gathered}\tau_{1}=\frac{\sqrt{9+\sqrt{73}}}{2}-1=1,094\ldots\\ \tau_{2}=\frac{\sqrt{9+\sqrt{73}}}{\sqrt{2}}-1=1,961\ldots\\ \tau_{3}=1+\sqrt{3}=2,732\ldots\end{gathered}

numbersτ1,τ2,τ3\tau_{1},\tau_{2},\tau_{3}are the (unique) values ​​ofτ\taufor which we haveX2=X1,X2=X4,X2=X3X_{2}=X_{1},X_{2}=X_{4},X_{2}=X_{3}respectively. It then follows that the interval[Z,Z+]\left[Z^{-},Z^{+}\right]reduces to[X2,X3],[X1,X4]\left[X_{2},X_{3}\right],\left[X_{1},X_{4}\right]respectively[X3,X2]\left[X_{3},X_{2}\right]depending on0ττ1,τ1ττ20\leqq\tau\leqq\tau_{1},\tau_{1}\leqq\tau\leqq\tau_{2}respectivelyτ2ττ3\tau_{2}\leqq\tau\leqq\tau_{3}. Ifτ>τ3\tau>\tau_{3}the interval[Z,Z+]\left[Z^{-},Z^{+}\right]does not exist.

Other notable values ​​ofτ\tauare

τ4=1,τ5=3+334=2,186,τ6=2,\tau_{4}=1,\tau_{5}=\frac{3+\sqrt{33}}{4}=2,186\ldots,\tau_{6}=2,

for which we haveX2=x1X_{2}=x_{1}(AndX3=x4X_{3}=x_{4}),X2=x3X_{2}=x_{3}(AndX3=x2X_{3}=x_{2}),X2=x4X_{2}=x_{4}(AndX3=x1X_{3}=x_{1}) respectively.
7. There are important special cases in which the existence of an interval [ can be affirmedZ,Z+Z^{-},Z^{+}], non-zero, on which the interpolation polynomial (2) preserves the sign of the function.

Let us designate byii^{\prime}the biggest indexi1,i2,,iki_{1},i_{2},\ldots,i_{k}and byi"i^{\prime\prime}the smallest of the cluesj1,j2,,jmj_{1},j_{2},\ldots,j_{m}defined in no. 4. We haveZ<xiZ^{-}<<x_{i^{\prime}}Andxi"<Z+x_{i^{\prime\prime}}<Z^{+}Therefore: ifi<i"i^{\prime}<i^{\prime\prime}the interval[Z,Z+]\left[Z^{-},Z^{+}\right]exists and is notnuLnul(we have[xi,xi"][Z,Z+]\left[x_{i^{\prime}},x_{i^{\prime\prime}}\right]\subset\left[Z^{-},Z^{+}\right]).

Inequalityi<i"i^{\prime}<i^{\prime\prime}is checked if a function existsΨ(x)\Psi(x)defined and non-decreasing on an interval containing the nodes and such that we have

L"(xi)L(xi)=Ψ(xi),i=1,2,,n.\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}=\Psi\left(x_{i}\right),\quad i=1,2,\ldots,n.

In this case, moreover,ir=r,r=1,2,k,js=nm+s,s==1,2,,m,i=k,in=nm+1i_{r}=r,r=1,2\ldots,k,j_{s}=n-m+s,s==1,2,\ldots,m,i^{\prime}=k,i^{n}=n-m+1and whenΨ(x)\Psi(x)is increasing, we even havei"i2(m+kn1)i^{\prime\prime}-i^{\prime}\leqq 2(m+k\geqq n-1).

The functionΨ¯¯(x)\overline{\bar{\Psi}}(x)exists and is even increasing in the following cases:
7.1. Considerp(2)p(\geqq 2)distinct pointshas1<has2<<haspa_{1}<a_{2}<\ldots<a_{p}of the real axis and areσ1,σ2,,σp,p\sigma_{1},\sigma_{2},\ldots,\sigma_{p},pSo, for eachq=1,2,,p1q=1,2,\ldots,p-1, there exists one and only one polynomial of degreennof the form (6), the nodes (1) being included in the interval (hasq,hasq+1a_{q},a_{q+1}) and satisfying the differential equation

Ln+(j=1nσjxhasj)L+C(x)HAS(x)L=0l^{n}+\left(\sum_{j=1}^{n}\frac{\sigma_{j}}{x-a_{j}}\right)l^{\prime}+\frac{C(x)}{A(x)}l=0 (18)

OrHAS=(xhas1)(xhas2)(xhasp)A=\left(x-a_{1}\right)\left(x-a_{2}\right)\ldots\left(x-a_{p}\right)AndCCis a polynomial of degreep2p-2In this case ,
we can take

Ψ(x)=j=1pσjxhasj\Psi(x)=-\sum_{j=1}^{p}\frac{\sigma_{j}}{x-a_{j}}

which is indeed an increasing function on the interval (hasq,hasq+1a_{q},a_{q+1}7.2 .
If, in particular,p=2,has1=1,has2=11p=2,a_{1}=-1,a_{2}=1^{1}) and if we askσ1=β+1,σ2=α+1\sigma_{1}=\beta+1,\sigma_{2}=\alpha+1, the differential equation (18) becomes
(19)(1x2)L"[(α+β÷2)xβ+α]L+n(n+α+β+1)L=0\left(1-x^{2}\right)l^{\prime\prime}-[(\alpha+\beta\div 2)x-\beta+\alpha]l^{\prime}+n(n+\alpha+\beta+1)l=0,

0 0 footnotetext: 1 ) The hypothesishas1=1,has2=1na_{1}=-1,a_{2}=1\mathrm{n}'is not an essential restriction. By a linear transformation we can pass to a finite interval [has1,has2a_{1},a_{2}] any.

the actual parametersα,β\alpha,\betaverifying inequalitiesα>1,β>1\alpha>-1,\beta>-1In this case (1) are the roots of the Jacobi polynomials of degreennand parametersα,β\alpha,\beta. We have

xk<βαα+β+2<xnm+1,x_{k}<\frac{\beta-\alpha}{\alpha+\beta+2}<x_{n-m+1},

so also

Z<βαα+β+2<Z+.Z^{-}<\frac{\beta-\alpha}{\alpha+\beta+2}<Z^{+}.

7.3. If (1) are the roots of the Laguerre polynomial of degreennparameterhas>1a>-1, the polynomial (6) satisfies the differential equation

xLn(xhas1)L+nL=0.xl^{n}-(x-a-1)l^{\prime}+nl=0. (20)

In this case, the nodes are positive and we can takeΨ(x)=1has+1x\Psi(x)=1-\frac{a+1}{x}which is indeed an increasing function forx>0x>0. We haveZ<α+1<Z+Z^{-}<\alpha+1<Z^{+}7.4 .
If (1) are the roots of the Hermite polynomial of degreenn, the polynomial (6) satisfies the differential equation

L"2xL+2nL=0.l^{\prime\prime}-2xl^{\prime}+2nl=0.

We can therefore takeΨ(x)=2x\Psi(x)=2xwhich is also an increasing function. In this caseZ<0<Z+Z^{-}<0<Z^{+}7.5
. We are still in the previous case if the nodes are equidistant. Letxi=x1+(i1)h(h>0),i=1,2,,nx_{i}=x_{1}+(i-1)h(h>0),i=1,2,\ldots,nthe knots.

The formula

L"(xi+1)L(xi+1)Ln(xi)L(xi)=2ni(ni)h>0,i=1,2,,n1\frac{l^{\prime\prime}\left(x_{i+1}\right)}{l^{\prime}\left(x_{i+1}\right)}-\frac{l^{n}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}=\frac{2n}{i(n-i)h}>0,i=1,2,\ldots,n-1

shows us that the following(L"(xi)L(xi))i=1n\left(\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}\right)_{i=1}^{n}is increasing. In this case, we havei=[n2],i"=[n+12]+1i^{\prime}=\left[\frac{n}{2}\right],i^{\prime\prime}=\left[\frac{n+1}{2}\right]+1And

Z<x1+([n2]1)h<x1+[n+12]h<Z+.Z^{-}<x_{1}+\left(\left[\frac{n}{2}\right]-1\right)h<x_{1}+\left[\frac{n+1}{2}\right]h<Z^{+}.
  1. 8.

    L. Fejér studied [1] the case of Jacobi polynomials in great detail, specifying the extremitiesZ,Z+Z^{-},Z^{+}of the interval[Z,Z+]\left[Z,Z^{+}\right]Thus, when inequalities

1<α0,1<β0-1<\alpha\leqq 0,\quad-1<\beta\leqq 0 (21)

are verified, we can obtain a more precise result. Indeed, if we assume that

(α+β+2)xiβ+α0,(α+β+2)xi+1β+α0(\alpha+\beta+2)x_{i}-\beta+\alpha\neq 0,\quad(\alpha+\beta+2)x_{i+1}-\beta+\alpha\neq 0

We have

Xi+1Xixi+1xi=L(xi,xi+1)[(α+β+2)xiβ+α][(α+β+2)xi+1β+α]\frac{X_{i+1}-X_{i}}{x_{i+1}-x_{i}}=\frac{L\left(x_{i},x_{i+1}\right)}{\left[(\alpha+\beta+2)x_{i}-\beta+\alpha\right]\left[(\alpha+\beta+2)x_{i+1}-\beta+\alpha\right]} (22)

Or

L(u,v)=(α+β+1)(α+β+2)uv(βα)(α+β+1)(u+v)++(βα)2(α+β+2)\begin{gathered}L(u,v)=(\alpha+\beta+1)(\alpha+\beta+2)uv-(\beta-\alpha)(\alpha+\beta+1)(u+v)+\\ +(\beta-\alpha)^{2}-(\alpha+\beta+2)\end{gathered}

Note thatL(u,v)L(u,v)is a linear function ofuuandvvIt follows that ifu,v(1,1),L(u,v)u,v\in(-1,1),L(u,v)remains between the smallest and largest of the numbersL(1,1),L(1,1),L(1,1)=L(1,1)L(1,1),L(-1,-1),L(1,-1)=L(-1,1)But, taking into account(21),L(1,1)=4α(α+1)0,L(1,1)=4β(β+1)0,L(1,1)=L(1,1)=4(α+1)(β+1)<0(21),L(1,1)=4\alpha(\alpha+1)\leqq 0,L(-1,-1)=4\beta(\beta+1)\leqq\leqq 0,L(1,-1)=L(-1,1)=-4(\alpha+1)(\beta+1)<0It is easy to deduce that we haveL(u,v)<0L(u,v)<0For1<u,v<1-1<u,v<1.

So we haveL(xt,xt+1)<0,i=1,2,,n1L\left(x_{t},x_{t+1}\right)<0,i=1,2,\ldots,n-1and formula (22) and the results of no. 4 show us thatZ=X1,Z+=XnZ^{-}=X_{1},Z^{+}=X_{n}.

The previous results can also occur for other parameter values.α,β\alpha,\beta, for example forα=β=1\alpha=\beta=-1. If2<α-2<\alpha,2<β-2<\beta, the differential equation (19) is still satisfied by a polynomial of degreennhaving all its roots real and distinct. The (1) are then the roots of a generalized Jacobi polynomial of degreenn[5]. But, these roots are continuous functions ofα,β\alpha,\betaand the previous results remain valid ifα,β\alpha,\betadiffer sufficiently little from -1.n4n\geqq 4and ifα2,β2\alpha\rightarrow-2,\beta\rightarrow-2we havex11,x21,xn11,xn1x_{1}\rightarrow-1,x_{2}\rightarrow-1,x_{n-1}\rightarrow 1,x_{n}\rightarrow 1and we deduce that ifα,β\alpha,\betaare sufficiently close to -2 we are within the conditions of Lemma 1 and the interval[Z,Z+]\left[Z^{-},Z^{+}\right]does not exist.
9. In the case of the roots of the Laguerre polynomial, the numbers can also be specified.Z,Z+Z^{-},Z^{+}By studying the functionx+1Ψ(x)=x++xα1xx+\frac{1}{\Psi(x)}=x++\frac{x-\alpha-1}{x}It is easy to find that

Zα+1α+1<α+1+has+1Z+Z^{-}\leqq\alpha+1-\sqrt{\alpha+1}<\alpha+1+\sqrt{a+1}\leqq Z^{+}

However, these boundaries are rather imprecise. Indeed, by doingα1\alpha\rightarrow-1From this we only deduceZZ+Z^{-}\leqq Z^{+}, although, as we will see later, here the strict inequality holds. The differential equation (20) has as its solution a polynomial of degreennhaving all its real and distinct roots for2<has-2<a.

For2<has1-2<a\leqq-1we are in the case of generalized Laguerre polynomials of parameterα[5]\alpha[5]. Ifα=1\alpha=-1we havex1=0x_{1}=0Andx1>x_{1}>
>0,i=2,3,,n>0,i=2,3,\ldots,nare the roots of the Laguerre polynomial of degreen1n-1and parameter 1. If2<α<1-2<\alpha<-1we havex1<0x_{1}<0Andxi>0,i==2,3,,nx_{i}>0,i==2,3,\ldots,n. Whenα2,x1,x2\alpha\rightarrow-2,x_{1},x_{2}both tend towards 0 and thexi,i=3,4,,nx_{i},i=3,4,\ldots,nto the (positive) roots of the Laguerre polynomial of degreen2n-2and parameter 2.

Forα=1\alpha=-1, We have

L"(x1)L(x1)=(n1),L"(xi)L(xi)=1,i=2,3,,n\frac{l^{\prime\prime}\left(x_{1}\right)}{l^{\prime}\left(x_{1}\right)}=-(n-1),\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}=1,\quad i=2,3,\ldots,n

So we have1n1=Z<1<Z+=x2+1-\frac{1}{n-1}=Z^{-}<1<Z^{+}=x_{2}+1.
For2<has<1-2<a<-1, We have

L"(xi)L(xi)=xihas1xi,i=1,2,,n\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}=\frac{x_{i}-a-1}{x_{i}},\quad i=1,2,\ldots,n

which is negative fori=1i=1and positive fori=2,3,,ni=2,3,\ldots,n. Fori>1i>1, we have

Xi+1Xixi+1xi=1has+1(xihas1)(xi+1has1)>0\frac{X_{i+1}-X_{i}}{x_{i+1}-x_{i}}=1-\frac{a+1}{\left(x_{i}-a-1\right)\left(x_{i+1}-a-1\right)}>0

and we deduce that

x1(x1has)x1has1=X1=Z<0<Z+=X2=x2(x2has)x2has1.\frac{x_{1}\left(x_{1}-a\right)}{x_{1}-a-1}=X_{1}=Z^{-}<0<Z^{+}=X_{2}=\frac{x_{2}\left(x_{2}-a\right)}{x_{2}-a-1}.

The interval[Z,Z+]\left[Z,Z^{+}\right]Therefore, it exists and is non-zero for2<α-2<\alphaIt can easily be seen that the length of this interval tends towards 0 forα2\alpha\rightarrow-2.

Let us also say a word about the case where (1) are the roots of the Hermite polynomial of degreennIn this case, the functionx+1ψ(x)=x+12xx+\frac{1}{\psi(x)}=x+\frac{1}{2x}has a maximum equal to2-\sqrt{2}Forx<0x<0and a minimum equal to2\sqrt{2}Forx>0x>0We can therefore deduce thatZ2<2Z+Z^{-}\leqq-\sqrt{2}<\sqrt{2}\leqq Z^{+}.

§2. Preservation of the monotonicity of the function

  1. 10.

    We will say that the interpolation polynomial (2) preserves the monotonicity of the function (more precisely: preserves the monotonicity of the functionffon the intervalII) if it is non-decreasing onIIfor any functionffnon-decreasing on the points (1). For this to be the case, it is necessary and sufficient that we haveF[f,x]0F^{\prime}[f,x]\geqq 0onIIfor any functionffnon-decreasing at points (1). The intervalIIcan be assumed to be non-zero

From formula (8) it follows that

i=1nhi=0\sum_{i=1}^{n}h_{i}^{\prime}=0 (23)

identically inxxThe transformation of Abel then gives us
F[f|x]=i=1n1(j=i+1nhj)(f(xi+1)f(xi))=i=1n1(j=1ihj)(f(xi+1)f(xi))F^{\prime}[f\mid x]=\sum_{i=1}^{n-1}\left(\sum_{j=i+1}^{n}h_{j}^{\prime}\right)\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)=\sum_{i=1}^{n-1}\left(-\sum_{j=1}^{i}h_{j}^{\prime}\right)\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)We deduce
that the interpolation polynomialF[f|x]F[f\mid x]preserves the monotonicity of the function if and only if

j=1ihj0,i=1,2,,n1\sum_{j=1}^{i}h_{j}^{\prime}\leqq 0,\quad i=1,2,\ldots,n-1 (24)

onIIor if and only if

mii+1nhj0,i=1,2,,n1\sum_{\begin{subarray}{c}m\\ i-i+1\end{subarray}}^{n}h_{j}^{\prime}\geqq 0,\quad i=1,2,\ldots,n-1 (\prime)

onIIIf
conditions (24) or (24') are not met, we can say that the interpolation polynomial (2) does not preserve the monotonicity of the function. We can then find a functionffnon-decreasing on the points (1) such that the polynomial (2) is decreasing on a (non-zero) subinterval ofII.

The polynomialh1h_{1}is of effective degree2n132n-1\geqq 3, from which it follows that ifF[f|x]F[f\mid x]preserves the monotonicity of the function, it is increasing onIIfor any functionffincreasing at points (1). It is easily shown that, under the same hypothesis,F[f|x]F[f\mid x]is non-increasing respectively decreasing onIIfor any functionffnon-increasing and decreasing respectively at points (1). We can therefore say that ifF[f|x]F[f\mid x]preserves the non-decreasing nature of the function; it also preserves the non-increasing, increasing, and decreasing nature of the function.
11. We have the following property:
II. The interpolation polynomialF[f|x]F[f\mid x]does not preserve the monotonicity of the function on any neighborhood 1 ) of a node.

Indeed, the polynomialh1h_{1}has all its real roots and more precisely the pointX1(<x1)X_{1}\left(<x_{1}\right)such as simple roots and nodesx2,x3,,xnx_{2},x_{3},\ldots,x_{n}as double roots. It follows that the derivativeh1h_{1}^{\prime}of the polynomialh1h_{1}cancels out, changing sign, at the pointsx2,x3,,xnx_{2},x_{3},\ldots,x_{n}We can see in the same way that the derivative of the polynomialhnh_{n}cancels out, changing sign, at the pointsx1,x2,,xn1x_{1},x_{2},\ldots,x_{n-1}Property II then results, taking into account the first condition (24) and the last condition (2424^{\prime}).

0 0 footnotetext: 1 ) By a neighborhood of a point we mean an interval containing that point as an interior point.

We haveh1(x1)=0h_{1}^{\prime}\left(x_{1}\right)=0and the polynomialh1h_{1}is increasing on the intervals(,x1),(xn,)\left(-\infty,x_{1}\right),\left(x_{n},\infty\right)(Andhnh_{n}is decreasing over the same intervals). It follows that the interpolation polynomialF[f|x]F[f\mid x]cannot maintain the monotonicity of the function over an intervalIIthat ifI[x1,xn]I\subseteq\left[x_{1},x_{n}\right], but this necessary condition is not, in general, sufficient.
12. We also have the following property:
III. There exists a right neighborhood ofx1x_{1}and a left neighborhood 1 ) ofxnx_{n}on which the interpolation polynomialF[f|x]F[f\mid x]preserves the monotony of the function.

It suffices to demonstrate that in the neighborhoods considered the polynomialsj=1hj,i=1,2,,n1\sum_{j=1}h_{j},i=1,2,\ldots,n-1are decreasing.

Let us consider the polynomialPi=j=1ihj(1in1)P_{i}=\sum_{j=1}^{i}h_{j}(1\leqq i\leqq n-1)This is the Lagrange-Hermite polynomial (3) which takes the value 1 at the nodes.x1,x2,,xix_{1},x_{2},\ldots,x_{i}the value 0 on the nodesxi+1,xi+2,,xnx_{i+1},x_{i+2},\ldots,x_{n}and whose derivative is zero at all nodes.PiP_{i}is of effective degree2n12n-1and its derivative has all its roots real and simple. These roots are the nodes and, according to Rolle's theorem, a simple root in each of the intervals

(x1,x2),(x2,x3),,(xi1,xi),(xi+1,xi+2),,(xn1,xn).\left(x_{1},x_{2}\right),\left(x_{2},x_{3}\right),\ldots,\left(x_{i-1},x_{i}\right),\left(x_{i+1},x_{i+2}\right),\ldots,\left(x_{n-1},x_{n}\right).

The polynomialPiP_{i}is alternately increasing and decreasing in the2n12n-1intervals determined by the roots ofPiP_{i}^{\prime}.

On the interval(xi,xi+1)Pi\left(x_{i},x_{i+1}\right)P_{i}is obviously decreasing, therefore it follows that it is decreasing in a right-hand neighborhood ofx1x_{1}and in a left-hand neighborhood ofxnx_{n}.

Property III is therefore proven. A closer examination of the shape of the polynomialsPiP_{i}allows us to further specify the pro-
) A right (left) neighborhood ofxxis a (non-zero) interval having the pointxxas left (right) extremity.
Property. Let us designate byξ1(i)<ξ2(i)<<ξn2(i)\xi_{1}^{(i)}<\xi_{2}^{(i)}<\ldots<\xi_{n-2}^{(i)}THEn2n-2different roots of the polynomial nodesPiP_{i}^{\prime}Let's ask.

ηi=min(ξi(i+1),ξi(i+2),,ξi(n1)),i=1,2,,n2\displaystyle\eta_{i}^{\prime}=\min\left(\xi_{i}^{(i+1)},\xi_{i}^{(i+2)},\ldots,\xi_{i}^{(n-1)}\right),i=1,2,\ldots,n-2
ηi"=max(ξi1(1),ξi1(2),,ξi1(i1)),i=2,3,,n1.\displaystyle\eta_{i}^{\prime\prime}=\max\left(\xi_{i-1}^{(1)},\xi_{i-1}^{(2)},\ldots,\xi_{i-1}^{(i-1)}\right),i=2,3,\ldots,n-1.

We then havex1<η1<x2,xi<ηi,ηi"<xi+1,i=2,3,,n2x_{1}<\eta_{1}^{\prime}<x_{2},x_{i}<\eta_{i}^{\prime},\eta_{i}^{\prime\prime}<x_{i+1},i=2,3,\ldots,n-2,xn1<ηn1"<xnx_{n-1}<\eta_{n-1}^{\prime\prime}<x_{n}.

Let us designate byILI_{l}the interval[ηi",ηi]\left[\eta_{i}^{\prime\prime},\eta_{i}^{\prime}\right]whenηi"<ηi,i=2,3,..,n2\eta_{i}^{\prime\prime}<\eta_{i}^{\prime},i=2,3,..,n-2and let's also askI1=[x1,η1],In1=ηn1",xnI_{1}=\left[x_{1},\eta_{1}^{\prime}\right],I_{n-1}=\left\lfloor\eta_{n-1}^{\prime\prime},x_{n}\right\rfloorThen the interpolation polynomialF[f|x]F[f\mid x]preserves the monotonicity of the function over any intervalILI_{l}which exists, in particular therefore on each of the intervalsI1,In1I_{1},I_{n-1}.

Note. The polynomialPtP_{t}is analogous to the Lagrange-Hermite polynomialQQdegree2n22n-2which takes the value 1 on the nodesx1,x2x_{1},x_{2},,xi\ldots,x_{i}the value 0 on the nodesxi+1,xi+2,,xnx_{i+1},x_{i+2},\ldots,x_{n}and whose derivative is zero at the pointsx1,x2,,xi1,xi+1,,xnx_{1},x_{2},\ldots,x_{i-1},x_{i+1},\ldots,x_{n}The polynomialQQintervenes in the demonstration of the famous Chebyshev-Markoff-Stieltjes separation theorem (see, for example, G. Szegö [5]).

The polynomialPiP_{i}is increasing forx>xnx>x_{n}, the coefficient ofx2n1x^{2n-1}Therefore, the value in this polynomial is positive. This property is expressed by the inequalities

j=1iL"(xj)L3(xj)<0,i=1,2,,n1.\sum_{j=1}^{i}\frac{l^{\prime\prime}\left(x_{j}\right)}{l^{\prime}3\left(x_{j}\right)}<0,i=1,2,\ldots,n-1.

As a result of (8), fori=ni=nThe first member of this formula is equal to 0.
13. We will examine the problem of the existence of intervalsIiI_{i}(For1<i<n11<i<n-1) in a few specific cases.

We have
Lemma 2. If

j=1ihj(x0)<0,i=1,2,,n1,\sum_{j=1}^{i}h_{j}^{\prime}\left(x_{0}\right)<0,i=1,2,\ldots,n-1,

there is a neighborhood of the pointx0x_{0}on which the interpolation polynomial (2) preserves the monotonicity of the function.

The property follows immediately from the continuity of the polynomials~j=1ihj,i=1,2,,n1\sim\sum_{j=1}^{i}h_{j}^{\prime},i=1,2,\ldots,n-1and condition (24).

We also have
Lemma 3. If we have

h1(x0)<0,hn(x0)>0h_{1}^{\prime}\left(x_{0}\right)<0,h_{n}^{\prime}\left(x_{0}\right)>0 (25)

and if the following
(26)

h1(x0),h2(x0),,hn(x0)h_{1}^{\prime}\left(x_{0}\right),h_{2}^{\prime}\left(x_{0}\right),\ldots,h_{n}^{\prime}\left(x_{0}\right)

exhibits a (single) sign variation, we can find a neighborhood of the pointx0x_{0}on which the interpolation polynomial (2) preserves the monotonicity of the function.

Indeed, eitherkkthe largest index for whichhk(x0)<0h_{k}\left(x_{0}\right)<0. We have1kn11\leqq k\leqq n-1And

hj(x0){0, For j=1,2,,k0, For j=k+1,k+2,,nh_{j}^{\prime}\left(x_{0}\right)\left\{\begin{array}[]{l}\leqq 0,\text{ pour }j=1,2,\ldots,k\\ \geqq 0,\text{ pour }j=k+1,k+2,\ldots,n\end{array}\right.

Taking into account (23) we deduce

=1ihj(x0)h1(x0)<0 For i=1,2,,k,\displaystyle\sum_{=1}^{i}h_{j}^{\prime}\left(x_{0}\right)\leqq h_{1}^{\prime}\left(x_{0}\right)<0\text{ pour }i=1,2,\ldots,k,
j=1ihj(x0)=j=i+1nhj(x0)hn(x0)<0, For i=k+1,k+2,,n1\displaystyle\sum_{j=1}^{i}h_{j}^{\prime}\left(x_{0}\right)=-\sum_{j=i+1}^{n}h_{j}^{\prime}\left(x_{0}\right)\leqq-h_{n}^{\prime}\left(x_{0}\right)<0,\text{ pour }i=k+1,k+2,\ldots,n-1

and Lemma 3 follows from Lemma 2.
14. Using the previous results, let us examine the preservation of monotonicity in a neighborhood of a root of the derivative of the polynomialLl.

Let us therefore suppose thatξ\xieither a root of the polynomialLl^{\prime}and let us form the sequence (26) forx0=ξx_{0}=\xiTaking into accountL(ξ)=0l^{\prime}(\xi)=0AndL(ξ)0l(\xi)\neq 0, We have

hi(ξ)=L2(ξ)(ξxi)2L2(xi)[L"(xi)L(xi)2ξxi],i=1,2,,n\displaystyle h_{i}^{\prime}(\xi)=\frac{l^{2}(\xi)}{\left(\xi-x_{i}\right)^{2}l^{\prime 2}\left(x_{i}\right)}\left[\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}-\frac{2}{\xi-x_{i}}\right],i=1,2,\ldots,n (27)
sghi(ξ)=sg[L"(xi)L(xi)2ξxi]sg(xiξ)sg[2+(xiξ)L(xi)L"(xi)]=\displaystyle\operatorname{sg}h_{i}^{\prime}(\xi)=\operatorname{sg}\left[\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}-\frac{2}{\xi-x_{i}}\right]-\operatorname{sg}\left(x_{i}-\xi\right)\operatorname{sg}\left[2+\left(x_{i}-\xi\right)\frac{l^{\prime}\left(x_{i}\right)}{l^{\prime\prime}\left(x_{i}\right)}\right]= (28)
=sg(xiξ)sg[1+(xiξ)i=1i1xixj],i=1,2,,n\displaystyle=\operatorname{sg}\left(x_{i}-\xi\right)\operatorname{sg}\left[1+\left(x_{i}-\xi\right)\sum_{i=1}^{i}\frac{1}{x_{i}-x_{j}}\right],i=1,2,\ldots,n

Taking into account (11) andx1<ξ<xnx_{1}<\xi<x_{n}We deduce that conditions (25) are always satisfied. But, the following

x1ξ,x2ξ,,xnξx_{1}-\xi,x_{2}-\xi,\ldots,x_{n}-\xi

presents exactly a change in sign. It follows that
IV. Ifξ\xiis a root of the derivative of polynomial (6) and if

2+(xiξ)L"(xi)L(xi)0,i=1,2,,n2+\left(x_{i}-\xi\right)\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}\geqq 0,i=1,2,\ldots,n (29)

there is a neighborhood of the pointξ\xion which the interpolation polynomialF[f|x]F[f\mid x]preserves the monotonicity of the function.
15. From the preceding analysis it follows that, forn=2n=2and forn=3n=3The following property is true
: V. The interpolation polynomialF[f|x]F[f\mid x]preserves the monotonicity of the function in a suitable neighborhood of each of the roots of the derivativeLl^{\prime}of the polynomialLl.

Moreover, ifn=2n=2, We have

h1=h2=6(xx1)(xx2)(x2x1)2h_{1}^{\prime}=-h_{2}^{\prime}=\frac{6\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{2}-x_{1}\right)^{2}}

and the interpolation polynomialF[f|x]F[f\mid x]preserves the monotonicity of the function on the intervalIIif and only ifI[x1,x2]I\subseteq\left[x_{1},x_{2}\right].

Forn=3n=3Property V results from the fact that, in this case, the sequence (26) forx0=ξx_{0}=\xipresents exactly a change in sign, regardless of the value ofh2(ξ)h_{2}^{\prime}(\xi)Moreover, it can be demonstrated by direct calculation thath1(ξ)+h2(ξ)<0h_{1}^{\prime}(\xi)+h_{2}^{\prime}(\xi)<0, in this case.

Let's consider the case againn=4n=4, since the nodes are symmetrically distributed, thereforex1+x4=x2+x3x_{1}+x_{4}=x_{2}+x_{3}Without restricting the generality of the problem, we can takex1=1,x2=ϱ,x3=ϱ,x4=1x_{1}=-1,x_{2}=-\varrho,x_{3}=\varrho,x_{4}=1, Orϱ\varrhois a positive number<1<1Indeed, by a linear transformation, which always preserves the monotonicity and symmetry of the distribution, we reduce the case of arbitrary nodes to the casex1=1,x4=1x_{1}=-1,x_{4}=1.

A calculation, which there is no need to reproduce in detail, gives us
h1+h2=(x2ϱ2)(x21)4ϱ3(1+ϱ)3[7(ϱ2+3ϱ+1)x2(3ϱ4+9ϱ3+11ϱ2+9ϱ+3)]h_{1}^{\prime}+h_{2}^{\prime}=\frac{\left(x^{2}-\varrho^{2}\right)\left(x^{2}-1\right)}{4\varrho^{3}(1+\varrho)^{3}}\left[7\left(\varrho^{2}+3\varrho+1\right)x^{2}-\left(3\varrho^{4}+9\varrho^{3}+11\varrho^{2}+9\varrho+3\right)\right]
The roots of the polynomial Ll^{\prime}areϱ2+12,0-\sqrt{\frac{\varrho^{2}+1}{2}},0Andϱ2+12\sqrt{\frac{\varrho^{2}+1}{2}}.
Forξ=ϱ2+12\xi=-\sqrt{\frac{\varrho^{2}+1}{2}}and forξ=ϱ2+12\xi=\sqrt{\frac{\varrho^{2}+1}{2}}We have

h1(ξ)+h2(ξ)=(1ϱ)4(ϱ2+5ϱ+1)32ϱ3(1+ϱ)<0h_{1}^{\prime}(\xi)+h_{2}^{\prime}(\xi)=-\frac{(1-\varrho)^{4}\left(\varrho^{2}+5\varrho+1\right)}{32\varrho^{3}(1+\varrho)}<0

and forξ=0\xi=0We have

h1(ξ)+h2(ξ)=3ϱ4+9ϱ3+11ϱ2+9ϱ+34ϱ(1+ϱ)3<0h_{1}^{\prime}(\xi)+h_{2}^{\prime}(\xi)=-\frac{3\varrho^{4}+9\varrho^{3}+11\varrho^{2}+9\varrho+3}{4\varrho(1+\varrho)^{3}}<0

In all cases, the conditions of Lemma 2 are verified forx0=ξx_{0}=\xiIt follows that property V is also true whenn=4n=4and the nodes are symmetrically distributed (1 ).
16. By (7) we have

2+(xiξ)L"(xi)L(xi)=1+vi(ξ),i=1,2,,n.2+\left(x_{i}-\xi\right)\frac{l^{\prime\prime}\left(x_{i}\right)}{l^{\prime}\left(x_{i}\right)}=1+v_{i}(\xi),i=1,2,\ldots,n.

But, when the nodes are normally distributed with respect to an interval (no. 5), we havevi(ξ)>0,i=1,2,,nv_{i}(\xi)>0,i=1,2,\ldots,nTherefore, inequalities (29) are, a fortiori, verified. We thus have the following property
VI. If the nodes are normally distributed with respect to an interval, the interpolation polynomialF[f|x]F[f\mid x]preserves (the sign and also) the monotonicity of the function in a suitable neighborhood of each of the roots of the derivativeLl^{\prime}of the polynomialLl.

Let us also examine inequalities (29) in the case where the nodes are the roots of the Jacobi polynomial of degreenn. Since1<ξ<1-1<\xi<1In this case we have

2+(xiξ)Ln(xt)L(xi)=2+(xtξ)(α+β+2)xiβ+α1xi22+\left(x_{i}-\xi\right)\frac{l^{n}\left(x_{t}\right)}{l^{\prime}\left(x_{i}\right)}=2+\left(x_{t}-\xi\right)\frac{(\alpha+\beta+2)x_{i}-\beta+\alpha}{1-x_{i}^{2}}

which remains between

2β+α+(α+β)xi1xi=(1β)(1xi)+(1+α)(1+xi)1xi\displaystyle\frac{2-\beta+\alpha+(\alpha+\beta)x_{i}}{1-x_{i}}=\frac{(1-\beta)\left(1-x_{i}\right)+(1+\alpha)\left(1+x_{i}\right)}{1-x_{i}}
2+βα(α+β)xi1+xi=(1α)(1+xi)+(1+β)(1xi)1+xi\displaystyle\frac{2+\beta-\alpha-(\alpha+\beta)x_{i}}{1+x_{i}}=\frac{(1-\alpha)\left(1+x_{i}\right)+(1+\beta)\left(1-x_{i}\right)}{1+x_{i}}

We can see that if1<α1,1<β1-1<\alpha\leqq 1,-1<\beta\leqq 1, inequalities (29) are verified. It is easy to see that these inequalities are verified even if1α1,1β1-1\leqq\alpha\leqq 1,-1\leqq\beta\leqq 1It follows that we have the following property
VII. If the nodes are the roots of the facobi polynomial of degree n and whose parameters satisfy the inequalities1α1,1β1-1\leqq\alpha\leqq 1,-1\leqq\beta\leqq 1the interpolation polynomialF[f|x]F[f\mid x]preserves the monotonicity of the function in a suitable neighborhood of each of the polynomial's rootsLl^{\prime}.
§3. On some other problems of preserving the shape of the function by interpolation
17. We can seek to study the preservation of the convexity (usual, that is to say of order 1) of the function by the interpolation polynomial (2).\square
1 ) The problem if the propertyVVWhether or not this is generally true remains to be determined.

The definition of conservation by[f|x]F{}^{F}[f\mid x]of non-concavity of order 1 is quite analogous to the definition of conservation of non-negativity and non-decrease [3].

If the interpolation polynomialF[f|x]F[f\mid x]It retains first-order non-concavity; it must also retain first-order non-convexity. But, the functionf=xf=xis simultaneously non-concave and non-convex of order 1 on any interval. The functionF[x|x]F[x\mid x]must therefore reduce to a polynomial of degree 1. From (3) it then follows that the polynomialF[x|x]=xi=1nkiF[x\mid x]=x-\sum_{i=1}^{n}k_{i}must be of degree 1. This is impossible since the coefficient ofx2n1x^{2n-1}in this polynomial is equal to

i=1n1L2(xi)>0.\sum_{i=1}^{n}\frac{1}{l^{\prime 2}\left(x_{i}\right)}>0. (30)

We therefore have the following property:
VIII. The interpolation polynomialF[f|x]F[f\mid x]cannot preserve the first-order non-concavity of the function on any (non-zero) interval.
18. When we study the preservation byF[f|x]F[f\mid x]of the sign, monotonicity or convexity of order 1, the fact that we assume the functionffDefining only on the points (1) is not an essential restriction. Indeed, such a function can always be extended on any linear set containing the pointsxix_{i}If, therefore, we assume that the setEEis arbitrary, we recover the previous results.
19. Finally, we can pose the same problems of preserving the shape of the function for interpolation polynomials other than polynomial (2) ofL\mathbf{L}. Fejér. In a previous work we dealt, in this sense, with the Lagrange polynomial [3].

Let us consider here the interpolation polynomial of G. Grünwald [2]

G[f|x]=i=1nf(xi)[L(x)(xxi)L(xi)]2G[f\mid x]=\sum_{i=1}^{n}f\left(x_{i}\right)\left[\frac{l(x)}{\left(x-x_{i}\right)l^{\prime}\left(x_{i}\right)}\right]^{2}

which is closely related to Fejér's polynomial (2).
The interpolation polynomialG[f|x]G[f\mid x](Obviously) preserves the sign of the function over any interval. For it to also preserve monotonicity, it must reduce to a constant for the function.f=1f=1. But,G[1|x]G[1\mid x]is a polynomial of effective degree2n222n-2\geqq 2since the coefficient ofx2n2x^{2n-2}is still equal to (30). Therefore, we have the following property:
IX. The interpolation polynomialG[f|x]G[f\mid x]cannot maintain the monotonicity of the function on any (non-zero) interval.

Cluj, November 20, 1961

BIBLIOGRAPHY

  1. 1.

    Fejér Leopold - Lagrangesche Interpolation and the zugehörigen konjugierten Punkte. Math. Annalen, 106, 1932, 1-55.

  2. 2.

    Grunwald G. — Qn the theory of interpolation, Acta Math. 75, 1943, 219-245.

  3. 3.

    Popoviciu T. - On the conservation of the shape of convexity of a function by its interpolation polynomials, Mathematica, 3 (26) (in press).
    p. - Uber gewisse Interpolationspolynome, die zu den Gacobischen und Laguer4. Szegö G. -schen Abszissen gehören, Math. Zeitschrift, 35, 1932, 579-602. Orthogonal Polynomials, 1959.

1962

Related Posts