[1] DeVita, V.T., Jr.; Chu, E. A, History of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653. [CrossRef] [PubMed]
[2] Steensma, D.P.; Kyle, R.A., Hematopoietic stem cell discoverers. Mayo Clin. Proc. 2021, 96, 830–831. [CrossRef] [PubMed]
[3] Bonnet, D., Leukemic stem cells show the way. Folia Histochem. Cytobiol. 2005, 43, 183–186. [PubMed]
[4] Schättler, H.; Ledzewicz, U., Optimal Control for Mathematical Models of Cancer Therapies: An Application of Geometric Methods; Springer: New York, NY, USA, 2015.
[5] Friberg, L.E.; Henningsson, A.; Maas, H.; Nguyen, L.; Karlsson, M.O., Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J. Clin. Oncol. 2002, 20, 4713–4721. [CrossRef]
[6] Arimoto, M.K.; Nakamoto, Y.; Nakatani, K.; Ishimori, T.; Yamashita, K.; Takaori-Kondo, A.; Togashi, K., Increased bone marrow uptake of 18F-FDG in leukemia patients: preliminary findings. SpringerPlus 2015, 4, 521. [CrossRef]
[7] Ohanian, M.; Faderl, S.; Ravandi, F.; Pemmaraju, N.; Garcia-Manero, G.; Cortes, J.; Estrov, Z., Is acute myeloid leukemia a liquid tumor? Int. J. Cancer 2013, 133, 534. [CrossRef]
[8] Weaver, B.A. How, Taxol/Paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681. [CrossRef]
[9] Engelhardt, D.; Michor, F. , A quantitative paradigm for decision-making in precision oncology. Trends Cancer 2021 , 7, 293–300. [CrossRef]
[10] Afenya, E.K., Using mathematical modeling as a resource in clinical trials. Math. Biosci. Eng. 2005, 3, 421–436. [CrossRef]
[11] Afenya, E.K.; Bentil, D.E., Some perspectives on modeling leukemia. Math. Biosci. 1998, 150, 113–130. [CrossRef]
[12] Berezansky, L.; Bunimovich-Mendrazitsky, S.; Shklyar, B., Stability and controllability issues in mathematical modeling of the intensive treatment of leukemia. J. Optim. Theory Appl. 2015 , 167, 326–341. [CrossRef]
[13] Bratus, A.S.; Fimmel, E.; Todorov, Y.; Semenov, Y.S.; Nuernberg, F. On strategies on a mathematical model for leukemia therapy. Nonlinear Anal. Real World Appl. 2012, 13, 1044–1059. [CrossRef]
[14] Crowell, H.L.; MacLean, A.L.; Stumpf, M.P.H., Feedback mechanisms control coexistence in a stem cell model of acute myeloid leukaemia. J. Theor. Biol. 2016, 401, 43–53. [CrossRef]
[15] Cucuianu, A.; Precup, R., A hypothetical-mathematical model of acute myeloid leukaemia pathogenesis. Comput. Math. Methods Med. 2010, 11, 49–65. [CrossRef]
[16] Dingli, D.; Michor, F., Successful therapy must eradicate cancer stem cells. Stem. Cells 2006, 24, 2603–2610. [CrossRef]
[17] Djulbegovic, B.; Svetina, S., Mathematical model of acute myeloblastic leukaemia: An investigation of the relevant kinetic parameters. Cell Prolif. 1985, 18, 307–319. [CrossRef]
[18] Foley, C.; Mackey, M.C., Dynamic hematological disease: A review. J. Math. Biol. 2009, 58, 285–322. [CrossRef]
[19] Kim, P.S.; Lee, P.P.; Levy, D., Modeling regulation mechanisms in the immune system. J. Theor. Biol. 2007, 246, 33–69. [CrossRef]
[20] Mac Lean, A.L.; Lo Celso, C.; Stumpf, M.P.H., Population dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlled. J. R. Soc. Interface 2013, 10, 20120968. [CrossRef]
[21] Moore, H.; Li, N.K., A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 2004, 227, 513–523. [CrossRef]
[22] Parajdi, L.G.; Precup, R.; Bonci, E.A.; Tomuleasa, C., A mathematical model of the transition from normal hematopoiesis to the chronic and accelerated-acute stages in myeloid leukemia. Mathematics 2020, 8, 376. [CrossRef]
[23] Precup, R., Mathematical understanding of the autologous stem cell transplantation. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 2012, 10, 155–167.
[24] Precup, R.; Serban, M.A.; Trif, D.; Cucuianu, A., A planning algorithm for correction therapies after allogeneic stem cell transplantation. J. Math. Model. Algorithms 2012, 11, 309–323. [CrossRef]
[25] Rubinow, S.I.; Lebowitz, J.L., A mathematical model of the acute myeloblastic leukemic state in man. Biophys. J. 1976, 16, 897–910. [CrossRef]
26] Sharp, J.A.; Browning, A.P.; Mapder, T.; Baker, C.M.; Burrage, K.; Simpson, M.J., Designing combination therapies using multiple optimal controls. J. Theor. Biol. 2020, 497, 110277. [CrossRef]
[27] Mackey, M.C.; Glass, L., Oscillation and chaos in physiological control systems. Science 1977, 197, 287–289. [CrossRef]
[28] Barbu, V., Mathematical Methods in Optimization of Differential Systems; Springer Science+Business Media: Dordrecht, The Netherlands, 1994.
[29] Becker, L.C.; Wheeler, M., Numerical and Graphical Solutions of Volterra Equations of the Second Kind; Maple Application Center: Waterloo, ON, Canada, 2005.
[30] Burton, T.A., Volterra Integral and Differential Equation, 2nd ed.; Mathematics in Science & Engineering; Elsevier: Amsterdam, The Netherlands, 2005; Volume 202.
[31] Linz, P., Analytical and Numerical Methods for Volterra Equations; Studies in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1985; Volume 7.