Abstract
Authors
Ulrich Abel
Fachbereich MND, Technische Hochschule Mittelhessen, Germany
Octavian Agratini
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
Keywords
Lototsky operator; Korovkin theorem; modulus of smoothness; K-functional; Durrmeyer extension
Cite this paper as:
U. Abel, O. Agratini, On the Durrmeyer-type variant and generalizations of Lototsky–Bernstein operators, Symmetry 2021, 13 (10), https://doi.org/10.3390/sym13101841
About this paper
Print ISSN
Not available yet.
Online ISSN
2073-8994
Google Scholar Profile
Paper (preprint) in HTML form
On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein Operators
References
[1] King, J.P., The Lototsky transform and Bernstein polynomials. Canad. J. Math. 1966, 18, 89–91. [Google Scholar] [CrossRef]
[2] Xu, X.-W.; Goldman, R., On Lototsky-Bernstein operators and Lototsky-Bernstein bases. Comput. Aided Geom. Design 2019, 68, 48–59. [Google Scholar] [CrossRef]
[3] Goldman, R.; Xu, X.-W.; Zeng, X.-M., Applications of the Shorgin identity to Bernstein type operators. Results Math. 2018, 73, 2. [Google Scholar] [CrossRef]
[4] Xu, X.-W.; Zeng, X.-M.; Goldman, R., Shape preserving properties of univariate Lototsky-Bernstein operators. J. Approx. Theory 2017, 224, 13–42. [Google Scholar] [CrossRef]
[5] Popa, D., Intermediate Voronovskaja type results for the Lototsky-Bernstein type operators. RACSAM 2020, 114, 12. [Google Scholar] [CrossRef]
[6] Eisenberg, S.; Wood, B., Approximation of analytic functions by Bernstein-type operators. J. Approx. Theory 1972, 6, 242–248. [Google Scholar] [CrossRef]
[7] Abramowitz, M.; Stegun, I.A., (Eds.) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Series 55; National Bureau of Standards Applied Mathematics: Washington, DC, USA, 1964. Available online: https://eric.ed.gov/?id=ED250164 (accessed on 30 July 2021).
[8] Derriennic, M.M., Sur l’approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifies. J. Approx. Theory 1981, 31, 325–343. [Google Scholar] [CrossRef]
[9] Shisha, O.; Mond, B., The degree of convergence of linear positive operators. Proc. Natl. Acad. Sci. USA 1968, 60, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
[10] DeVore, R.A.; Lorentz, G.G., Constructive Approximation; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Germany, 1993; Volume 303. [Google Scholar]
[11] Mitjagin, B.S.; Semenov, E.M., Lack of interpolation of linear operators in spaces of smooth functions. Math. USSR. Izv. 1977, 11, 1229–1266. [Google Scholar] [CrossRef]
[12] Johnen, H., Inequalities connected with the moduli of smoothness. Mat. Vesnik 1972, 9, 289–305. [Google Scholar]
[13] Altomare, F., Korovkin-type theorems and approximation by positive linear operators. Surv. Approx. Theory 2010, 5, 92–164. [Google Scholar]
[14] Šaškin, Y.A., Korovkin systems in spaces of continuous functions. Izv. Akad. Nauk SSSR Ser. Mat. 1962, 26, 495–512. translated in Amer. Math. Soc. Transl. 1966, 54, 125–144. (In Russian) [Google Scholar]
[15] Censor, E., Quantitative results for positive linear approximation operators. J. Approx. Theory 1971, 4, 442–450. [Google Scholar] [CrossRef]
[16] Deo, N.; Kumar, S., Durrmeyer variant of Apostol-Genocchi-Baskakov operators. Quaes. Math. 2020. [Google Scholar] [CrossRef]
[17] Garg, T.; Ispir, N.; Agrawal, P.N., Bivariate q-Bernstein-Chlodowsky-Durrmeyer type operators and associated GBS operators. Asian-Eur. J. Math. 2020, 13, 2050091. [Google Scholar] [CrossRef]
[18] Kajla, A.; Mursaleen, M.; Acar, T., Durrmeyer type generalization of parametric Bernstein operators. Symmetry 2020, 12, 1141. [Google Scholar] [CrossRef]
[19] Neer, T.; Acu, A.M.; Agrawal, P.N., Baskakov-Durrmeyer type operators involving generalized Appell polynomials. Math. Methods Appl. Sci. 2020, 43, 2911–2923. [Google Scholar] [CrossRef]
[20] Abel, U.; Leviatan, D.; Rasa, I., On the q-monotonicity preservation of Durrmeyer-type operators. Mediterr. J. Math. 2021, 18, 173. [Google Scholar] [CrossRef]
[21] Agratini, O.; Aral, A., Approximation of some classes of functions by Landau type operators. Results Math. 2021, 76, 12. [Google Scholar] [CrossRef]