On the extremal semi-Lipschitz function

Abstract


The extremal elements of the unit balls of Banach spaces play an important role in the study of the geometry of the space as well in various applications. For Banach spaces of Lipschitz real functions the extremal elements of the unit ball are investigates in numerous papers (S. Cobzas 1989, J. D. Farmer 1994, N. V. Rao and A. C. Roy 1970, Roy 1968 and in the references therein). In this note we shall present a procedure to obtain extremal elements of the unit ball of the quasi normed semilinear space of real-valued semi-Lipschitz functions defined on a quasi-metric space.

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

semi metric spaces; semi Lipschitz real functions.

Paper coordinates

C. Mustăţa, On the extremal semi-Lipschitz function, Rev. Anal. Numer. Theor. Approx. 31 (2002) no. 1, 103-108.

PDF

About this paper

Journal

Revue d’Analyse Numer.Theor. Approx.

Publisher Name

Publishing Romanian Academy

Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

[1] Cobzas, S. and Mustata, C., Norm preserving extension of convex Lipschitz functions, J. Approx. Theory,24, pp. 555–564, 1978.
[2] Cobzas, S., Extreme points in Banach spaces of Lipschitz functions, Mathematica, 31(54), pp. 25–33, 1989.
[3] Farmer, J. D., Extreme points of the unit ball of the space of Lipschitz functions, Proc. Amer. Math. Soc., 121, no. 3, pp. 807–813, 1994.
[4] Krein, M. G. and A. A. Nudel’man, The Markov Moment Problem and Extremum Problems, Nauka, Moscow, 1973, (in Russian).
[5] Koppermann, R. D., All topologies come from generalized metrics, Amer. Math. Monthly, 95, pp. 89–97, 1988.
[6] McShane, E. J., Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837–842, 1934.
[7] Mustata, C., Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19, pp. 222–230, 1977.
[8] Mustata, C., Uniquenness of the extension of semi-Lipschitz functions on quasi-metric spaces, Bull. S ̧t. Univ. Baia Mare, Mat.-Inf., XVI, no. 2, pp. 207–212, 2000.
[9] Mustata, C., Extension of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx., 2001 (to appear).
[10] Phelps, R. R., Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc., 95, pp. 238–255, 1960.
[11] Rao, N. V. and Roy, A. K., Extreme Lipschitz functions, Math. Ann., 189, pp. 26–46, 1970.
[12] Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric space, J. Approx. Theory, 103, pp. 293-301, 2000.
[13] Roy, A. K., Extreme points and linear isometries of Banach spaces of Lipschitz functions, Canad. J. Math., 20, pp. 1150–1164, 1968.
[14] Wells, J. H. and Williams, L. R., Embedings and Extensions in Analysis, Springer-Verlag, Berlin, 1975.

Paper (preprint) in HTML form

2002-Mustata-On the extremal semi-Lipschitz function-Jnaat

ON THE EXTREMAL SEMI-LIPSCHITZ FUNCTIONS

COSTICĂ MUSTĂŢA*

Abstract

The extremal elements of the unit balls of Banach spaces play an important role in the study of the geometry of the space as well in various applications. For Banach spaces of Lipschitz real functions the extremal elements of the unit ball are investigates in numerous papers (S. Cobzas 1989, J. D. Farmer 1994, N. V. Rao and A. C. Roy 1970, Roy 1968 and in the references therein). In this note we shall present a procedure to obtain extremal elements of the unit ball of the quasi-normed semilinear space of real-valued semi-Lipschitz functions defined on a quasi-metric space.

MSC 2000. 46A22, 26A16.
Keywords. semi metric spaces, semi Lipschitz real functions.

1. INTRODUCTION

Let X X XXX be a nonvoid set. A function d : X [ 0 , ] d : X [ 0 , ] d:X rarr[0,oo]d: X \rightarrow[0, \infty]d:X[0,] is called a quasi - metric if it satisfies the conditions:
(i) d ( x , y ) = d ( y , x ) = 0 x = y d ( x , y ) = d ( y , x ) = 0 x = y d(x,y)=d(y,x)=0Longleftrightarrow x=yd(x, y)=d(y, x)=0 \Longleftrightarrow x=yd(x,y)=d(y,x)=0x=y
(ii) d ( x , y ) d ( x , z ) + d ( z , y ) d ( x , y ) d ( x , z ) + d ( z , y ) d(x,y) <= d(x,z)+d(z,y)d(x, y) \leq d(x, z)+d(z, y)d(x,y)d(x,z)+d(z,y)
or
(i') d ( x , y ) = 0 x = y d ( x , y ) = 0 x = y d(x,y)=0Longleftrightarrow x=yd(x, y)=0 \Longleftrightarrow x=yd(x,y)=0x=y
and (ii), for all x , y , z X x , y , z X x,y,z in Xx, y, z \in Xx,y,zX. The pair ( X , d X , d X,dX, dX,d ) is called a quasi - metric space.
Remark that d d ddd is not a symmetric function, i.e., it is possible that d ( x , y ) d ( y , x ) d ( x , y ) d ( y , x ) d(x,y)!=d(y,x)d(x, y) \neq d(y, x)d(x,y)d(y,x) for x , y X x , y X x,y in Xx, y \in Xx,yX.
A function f : X R f : X R f:X rarrRf: X \rightarrow \mathbb{R}f:XR, defined on a quasi - metric space ( X , d X , d X,dX, dX,d ) is called semi-Lipschitz if there exists K 0 K 0 K >= 0K \geq 0K0 such that
(1) f ( x ) f ( y ) K d ( x , y ) , (1) f ( x ) f ( y ) K d ( x , y ) , {:(1)f(x)-f(y) <= K*d(x","y)",":}\begin{equation*} f(x)-f(y) \leq K \cdot d(x, y), \tag{1} \end{equation*}(1)f(x)f(y)Kd(x,y),
for all x , y X x , y X x,y in Xx, y \in Xx,yX.
A function f : X R f : X R f:X rarrRf: X \rightarrow \mathbb{R}f:XR is called d d <= _(d^(-))\leq_{d^{-}}dincreasing if
a) d ( x , y ) = 0 d ( x , y ) = 0 d(x,y)=0d(x, y)=0d(x,y)=0 implies f ( x ) f ( y ) 0 f ( x ) f ( y ) 0 f(x)-f(y) <= 0f(x)-f(y) \leq 0f(x)f(y)0
or, equivalently
a ) f ( x ) f ( y ) > 0 a f ( x ) f ( y ) > 0 {:a^('))f(x)-f(y) > 0\left.a^{\prime}\right) f(x)-f(y)>0a)f(x)f(y)>0 implies d ( x , y ) > 0 d ( x , y ) > 0 d(x,y) > 0d(x, y)>0d(x,y)>0, for all x , y X x , y X x,y in Xx, y \in Xx,yX.
Let
(2) SLip X = { f : X R f is d -increasing and f X < } , (2)  SLip  X = f : X R f  is  d -increasing and  f X < , {:(2)" SLip "X={f:X rarrR∣f" is " <= _(d)"-increasing and "||f||_(X) < oo}",":}\begin{equation*} \text { SLip } X=\left\{f: X \rightarrow \mathbb{R} \mid f \text { is } \leq_{d} \text {-increasing and }\|f\|_{X}<\infty\right\}, \tag{2} \end{equation*}(2) SLip X={f:XRf is d-increasing and fX<},
(see [12]), where
(3) f X = sup { ( f ( x ) f ( y ) ) 0 d ( x , y ) : x , y X , d ( x , y ) 0 } (3) f X = sup ( f ( x ) f ( y ) ) 0 d ( x , y ) : x , y X , d ( x , y ) 0 {:(3)||f||_(X)=s u p{((f(x)-f(y))vv0)/(d(x,y)):x,y in X,d(x,y)!=0}:}\begin{equation*} \|f\|_{X}=\sup \left\{\frac{(f(x)-f(y)) \vee 0}{d(x, y)}: x, y \in X, d(x, y) \neq 0\right\} \tag{3} \end{equation*}(3)fX=sup{(f(x)f(y))0d(x,y):x,yX,d(x,y)0}
The set S L i p X S L i p X SLipXS L i p XSLipX defined in (2) is exactly the set of all semi-Lipschitz functions on ( X , d X , d X,dX, dX,d ), and f X f X ||f||_(X)\|f\|_{X}fX defined by (3) is the least semi-Lipschitz constant for f f fff, i.e.
(4) f ( x ) f ( y ) f X d ( x , y ) , x , y X (4) f ( x ) f ( y ) f X d ( x , y ) , x , y X {:(4)f(x)-f(y) <= ||f||_(X)*d(x","y)","quad x","y in X:}\begin{equation*} f(x)-f(y) \leq\|f\|_{X} \cdot d(x, y), \quad x, y \in X \tag{4} \end{equation*}(4)f(x)f(y)fXd(x,y),x,yX
and every K 0 K 0 K >= 0K \geq 0K0, for which the inequality (1) holds, satisfies K f X K f X K >= ||f||_(X)K \geq\|f\|_{X}KfX (see [9] and [12]).
For x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X be fixed, denote by
(5) S Lip 0 X = { f S Lip X : f ( x 0 ) = 0 } (5) S  Lip  0 X = f S  Lip  X : f x 0 = 0 {:(5)S" Lip "_(0)X={f in S" Lip "X:f(x_(0))=0}:}\begin{equation*} S \text { Lip }_{0} X=\left\{f \in S \text { Lip } X: f\left(x_{0}\right)=0\right\} \tag{5} \end{equation*}(5)S Lip 0X={fS Lip X:f(x0)=0}
the set of all real-valued semi-Lipschitz functions defined on the quasi-metric space X X XXX which vanish at the fixed point x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X.
Let V V VVV be a nonvoid set and R + = [ 0 , ) R + = [ 0 , ) R^(+)=[0,oo)\mathbb{R}^{+}=[0, \infty)R+=[0,). Suppose that on V V VVV is defined an operation
+ : V × V V + : V × V V +:V xx V rarr V+: V \times V \rightarrow V+:V×VV
such that ( V , + V , + V,+V,+V,+ ) is an Abelian semigroup, i.e. + satisfies the conditions
(i) ( x + y ) + z = x + ( y + z ) ( x + y ) + z = x + ( y + z ) (x+y)+z=x+(y+z)(x+y)+z=x+(y+z)(x+y)+z=x+(y+z)
(ii) x + y = y + x x + y = y + x x+y=y+xx+y=y+xx+y=y+x
(iii) 0 + x = x ( 0 0 + x = x ( 0 0+x=x(00+x=x(00+x=x(0 is the neutral element of semigroup ( V , + ) ) ( V , + ) ) (V,+))(V,+))(V,+))
for all x , y , z V x , y , z V x,y,z in Vx, y, z \in Vx,y,zV, and an operation
: R + × V V : R + × V V *:R^(+)xx V rarr V\cdot: \mathbb{R}^{+} \times V \rightarrow V:R+×VV
having the properties
(i) a ( b x ) = ( a b ) x , a , b R + ; x V a ( b x ) = ( a b ) x , a , b R + ; x V a*(b*x)=(a*b)*x,a,b inR^(+);x in Va \cdot(b \cdot x)=(a \cdot b) \cdot x, a, b \in \mathbb{R}^{+} ; x \in Va(bx)=(ab)x,a,bR+;xV
(ii) ( a + b ) x = ( a x ) + ( b x ) , a , b R + ; x V ( a + b ) x = ( a x ) + ( b x ) , a , b R + ; x V (a+b)*x=(a*x)+(b*x),a,b inR^(+);x in V(a+b) \cdot x=(a \cdot x)+(b \cdot x), a, b \in \mathbb{R}^{+} ; x \in V(a+b)x=(ax)+(bx),a,bR+;xV
(iii) a ( x + y ) = a x + a y , a R + ; x , y V a ( x + y ) = a x + a y , a R + ; x , y V a*(x+y)=a*x+a*y,a inR^(+);x,y in Va \cdot(x+y)=a \cdot x+a \cdot y, a \in \mathbb{R}^{+} ; x, y \in Va(x+y)=ax+ay,aR+;x,yV
(iv) 1 x = x , 1 R + , x V 1 x = x , 1 R + , x V 1*x=x,1inR^(+),x in V1 \cdot x=x, 1 \in \mathbb{R}^{+}, x \in V1x=x,1R+,xV.
The system ( V , + , , R + V , + , , R + V,+,*,R^(+)V,+, \cdot, \mathbb{R}^{+}V,+,,R+) is called a semi linear space.
The opposite element (if exists) of x V x V x in Vx \in VxV is denoted by x x -x-xx.
A functional V : V [ 0 , ) V : V [ 0 , ) ||*||_(V):V rarr[0,oo)\|\cdot\|_{V}: V \rightarrow[0, \infty)V:V[0,) defined on a semilinear space ( V , + , , R + V , + , , R + V,+,*,R^(+)V,+, \cdot, \mathbb{R}^{+}V,+,,R+) is called a quasi-norm on V V VVV if it satisfies the conditions:
(i) x , x V x , x V x,-x in Vx,-x \in Vx,xV and x V = x V = 0 x = 0 x V = x V = 0 x = 0 ||x||_(V)=||-x||_(V)=0Longleftrightarrow x=0\|x\|_{V}=\|-x\|_{V}=0 \Longleftrightarrow x=0xV=xV=0x=0
(ii) a x V = a x V , a R + , x V a x V = a x V , a R + , x V ||ax||_(V)=a||x||_(V),a inR^(+),x in V\|a x\|_{V}=a\|x\|_{V}, a \in \mathbb{R}^{+}, x \in VaxV=axV,aR+,xV
(iii) x + y V x V + y V , x , y V x + y V x V + y V , x , y V ||x+y||_(V) <= ||x||_(V)+||y||_(V),x,y in V\|x+y\|_{V} \leq\|x\|_{V}+\|y\|_{V}, x, y \in Vx+yVxV+yV,x,yV.
The pair ( V , V V , V V,||*||_(V)V,\|\cdot\|_{V}V,V ) is called a quasi-normed semilinear space (see [5] and [12]).
If X X XXX is a linear space then a functional X : X [ 0 , ) X : X [ 0 , ) ||*||_(X):X rarr[0,oo)\|\cdot\|_{X}: X \rightarrow[0, \infty)X:X[0,) satisfying the axioms of a quasi-norm is called an asymmetric norm on X X XXX (see [4]).
It is immediate that the functional defined by (3) is a quasi-norm on S L i p 0 X S L i p 0 X SLip_(0)XS L i p_{0} XSLip0X, i.e. the pair ( S L i p 0 X , X S L i p 0 X , X SLip_(0)X,||*||_(X)S L i p_{0} X,\|\cdot\|_{X}SLip0X,X ) is a quasi-normed semilinear space.
If Y X Y X Y sub XY \subset XYX and x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y then one considers the semi-Lipschitz functions on Y Y YYY which vanish at x 0 x 0 x_(0)x_{0}x0 and the quasi-normed semilinear space ( S S SSS Lip 0 Y , Y 0 Y , Y _(0)Y,||*||_(Y){ }_{0} Y,\|\cdot\|_{Y}0Y,Y ), where Y Y ||*||_(Y)\|\cdot\|_{Y}Y is defined like in (3) with Y Y YYY instead of X X XXX.
The following extension theorem for semi-Lipschitz functions is similar to Mc Shane's [6] extension theorem for Lipschitz functions.
Theorem 1. [9]. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X fixed and Y X Y X Y sub XY \subset XYX such that x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y. Then every function f S f S f in Sf \in SfS Lip 0 Y 0 Y _(0)Y{ }_{0} Y0Y admits at least one extension in S L i p 0 X S L i p 0 X SLip_(0)XS L i p_{0} XSLip0X, i.e. there exists H S H S H in SH \in SHS Lip 0 X 0 X _(0)X{ }_{0} X0X such that
(6) H | Y = f and H X = f Y (6) H Y = f  and  H X = f Y {:(6)H|_(Y)=f" and "||H||_(X)=||f||_(Y):}\begin{equation*} \left.H\right|_{Y}=f \text { and }\|H\|_{X}=\|f\|_{Y} \tag{6} \end{equation*}(6)H|Y=f and HX=fY
Denote by
(7) E Y ( f ) = { H S Lip 0 X : H | Y = f and H X = f Y } (7) E Y ( f ) = H S Lip 0 X : H Y = f  and  H X = f Y {:(7)E_(Y)(f)={H in SLip_(0)X:H|_(Y)=f" and "||H||_(X)=||f||_(Y)}:}\begin{equation*} E_{Y}(f)=\left\{H \in S \operatorname{Lip}_{0} X:\left.H\right|_{Y}=f \text { and }\|H\|_{X}=\|f\|_{Y}\right\} \tag{7} \end{equation*}(7)EY(f)={HSLip0X:H|Y=f and HX=fY}
the nonvoid set of all extensions of f S L i p 0 Y f S L i p 0 Y f in SLip_(0)Yf \in S L i p_{0} YfSLip0Y which preserve the quasi-norm of f f fff.
We have shown in [9] that the functions
(8) F ( x ) = inf y Y { f ( y ) + f Y d ( x , y ) } , x X (8) F ( x ) = inf y Y f ( y ) + f Y d ( x , y ) , x X {:(8)F(x)=i n f_(y in Y){f(y)+||f||_(Y)d(x,y)}","quad x in X:}\begin{equation*} F(x)=\inf _{y \in Y}\left\{f(y)+\|f\|_{Y} d(x, y)\right\}, \quad x \in X \tag{8} \end{equation*}(8)F(x)=infyY{f(y)+fYd(x,y)},xX
and
(9) G ( x ) = sup y Y { f ( y ) f Y d ( y , x ) } , x X (9) G ( x ) = sup y Y f ( y ) f Y d ( y , x ) , x X {:(9)G(x)=s u p_(y in Y){f(y)-||f||_(Y)d(y,x)}","quad x in X:}\begin{equation*} G(x)=\sup _{y \in Y}\left\{f(y)-\|f\|_{Y} d(y, x)\right\}, \quad x \in X \tag{9} \end{equation*}(9)G(x)=supyY{f(y)fYd(y,x)},xX
belong to E Y ( f ) E Y ( f ) E_(Y)(f)E_{Y}(f)EY(f).
Let
(10) B Y = { f S Lip 0 Y : f Y 1 } (10) B Y = f S Lip 0 Y : f Y 1 {:(10)B_(Y)={f in SLip_(0)Y:||f||_(Y) <= 1}:}\begin{equation*} B_{Y}=\left\{f \in S \operatorname{Lip}_{0} Y:\|f\|_{Y} \leq 1\right\} \tag{10} \end{equation*}(10)BY={fSLip0Y:fY1}
be the unit ball of the quasi-normed semilinear space ( S L i p 0 Y , Y S L i p 0 Y , Y SLip_(0)Y,||*||_(Y)S L i p_{0} Y,\|\cdot\|_{Y}SLip0Y,Y ) and let B X B X B_(X)B_{X}BX be the corresponding unit ball of ( S L i p 0 Y , X S L i p 0 Y , X SLip_(0)Y,||*||_(X)S L i p_{0} Y,\|\cdot\|_{X}SLip0Y,X ).
Obviously that f B Y f B Y f inB_(Y)f \in B_{Y}fBY implies E Y ( f ) B X E Y ( f ) B X E_(Y)(f)subB_(X)E_{Y}(f) \subset B_{X}EY(f)BX.
A subset C C CCC of a semi-linear space ( V , + , , R + V , + , , R + V,+,*,R^(+)V,+, \cdot, \mathbb{R}^{+}V,+,,R+) is called convex if α x + ( 1 α ) y C α x + ( 1 α ) y C alpha x+(1-alpha)y in C\alpha x+ (1-\alpha) y \in Cαx+(1α)yC whenever x , y C x , y C x,y in Cx, y \in Cx,yC and α [ 0 , 1 ] α [ 0 , 1 ] alpha in[0,1]\alpha \in[0,1]α[0,1].
A subset M M MMM of C C CCC is called a face of C C CCC if λ x + ( 1 λ ) y M λ x + ( 1 λ ) y M lambda x+(1-lambda)y in M\lambda x+(1-\lambda) y \in Mλx+(1λ)yM for x , y C x , y C x,y in Cx, y \in Cx,yC and some λ ( 0 , 1 ) λ ( 0 , 1 ) lambda in(0,1)\lambda \in(0,1)λ(0,1) implies x , y M x , y M x,y in Mx, y \in Mx,yM. A one-point face of C C CCC is called an extremal element of C C CCC, and the set of all extremal elements of C C CCC is denoted by ext C C CCC.
It is obvious that B Y B Y B_(Y)B_{Y}BY (respectively B X B X B_(X)B_{X}BX ) is a convex subset of S L i p 0 Y S L i p 0 Y SLip_(0)YS L i p_{0} YSLip0Y (respectively S L i p 0 X S L i p 0 X SLip_(0)XS L i p_{0} XSLip0X ), and if M B X M B X M subB_(X)M \subset B_{X}MBX is a face, then f X = 1 f X = 1 ||f||_(X)=1\|f\|_{X}=1fX=1 for any f M f M f in Mf \in MfM.
Theorem 2. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, x 0 x 0 x_(0)x_{0}x0 a fixed point in X X XXX, and Y X Y X Y sub XY \subset XYX such that x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y. Then:
a) For every f S f S f in Sf \in SfS Lip 0 Y 0 Y _(0)Y{ }_{0} Y0Y the set E Y ( f ) S E Y ( f ) S E_(Y)(f)sub SE_{Y}(f) \subset SEY(f)S Lip 0 X 0 X _(0)X{ }_{0} X0X is convex;
b) For every H E Y ( f ) H E Y ( f ) H inE_(Y)(f)H \in E_{Y}(f)HEY(f) the inequalities
(11) F ( x ) H ( x ) G ( x ) (11) F ( x ) H ( x ) G ( x ) {:(11)F(x) >= H(x) >= G(x):}\begin{equation*} F(x) \geq H(x) \geq G(x) \tag{11} \end{equation*}(11)F(x)H(x)G(x)
hold for all x X x X x in Xx \in XxX, where the functions F F FFF and G G GGG are defined by (8) and (9), respectively;
c) If f f f inf \inf ext B Y B Y B_(Y)B_{Y}BY then E Y ( f ) E Y ( f ) E_(Y)(f)E_{Y}(f)EY(f) is a face of B X B X B_(X)B_{X}BX and the functions F , G F , G F,GF, GF,G (defined by (8) and (9)) are extremal elements of B X B X B_(X)B_{X}BX.
Proof. a) Let F 1 , F 2 E Y ( f ) F 1 , F 2 E Y ( f ) F_(1),F_(2)inE_(Y)(f)F_{1}, F_{2} \in E_{Y}(f)F1,F2EY(f) and α ( 0 , 1 ) α ( 0 , 1 ) alpha in(0,1)\alpha \in(0,1)α(0,1). We have
( α F 1 + ( 1 α ) F 2 ) | Y = α f + ( 1 α ) f = f α F 1 + ( 1 α ) F 2 Y = α f + ( 1 α ) f = f (alphaF_(1)+(1-alpha)F_(2))|_(Y)=alpha f+(1-alpha)f=f\left.\left(\alpha F_{1}+(1-\alpha) F_{2}\right)\right|_{Y}=\alpha f+(1-\alpha) f=f(αF1+(1α)F2)|Y=αf+(1α)f=f
and
α F 1 + ( 1 α ) F 2 X α F 1 X + ( 1 α ) F 2 X = α f Y + ( 1 α ) f Y = f Y . α F 1 + ( 1 α ) F 2 X α F 1 X + ( 1 α ) F 2 X = α f Y + ( 1 α ) f Y = f Y . {:[||alphaF_(1)+(1-alpha)F_(2)||_(X) <= alpha||F_(1)||_(X)+(1-alpha)||F_(2)||_(X)],[=alpha||f||_(Y)+(1-alpha)||f||_(Y)=||f||_(Y).]:}\begin{aligned} \left\|\alpha F_{1}+(1-\alpha) F_{2}\right\|_{X} & \leq \alpha\left\|F_{1}\right\|_{X}+(1-\alpha)\left\|F_{2}\right\|_{X} \\ & =\alpha\|f\|_{Y}+(1-\alpha)\|f\|_{Y}=\|f\|_{Y} . \end{aligned}αF1+(1α)F2XαF1X+(1α)F2X=αfY+(1α)fY=fY.
On the other hand
f Y = α f + ( 1 α ) f Y = α F 1 | Y + ( 1 α ) F 2 | Y α F 1 + ( 1 α ) F 2 X f Y = α f + ( 1 α ) f Y = α F 1 Y + ( 1 α ) F 2 Y α F 1 + ( 1 α ) F 2 X {:[||f||_(Y)=||alpha f+(1-alpha)f||_(Y)],[=|| alphaF_(1)|_(Y)+(1-alpha)F_(2)|_(Y)|| <= ||alphaF_(1)+(1-alpha)F_(2)||_(X)]:}\begin{aligned} \|f\|_{Y} & =\|\alpha f+(1-\alpha) f\|_{Y} \\ & =\left\|\left.\alpha F_{1}\right|_{Y}+\left.(1-\alpha) F_{2}\right|_{Y}\right\| \leq\left\|\alpha F_{1}+(1-\alpha) F_{2}\right\|_{X} \end{aligned}fY=αf+(1α)fY=αF1|Y+(1α)F2|YαF1+(1α)F2X
showing that α F 1 + ( 1 α ) F 2 X = f Y α F 1 + ( 1 α ) F 2 X = f Y ||alphaF_(1)+(1-alpha)F_(2)||_(X)=||f||_(Y)\left\|\alpha F_{1}+(1-\alpha) F_{2}\right\|_{X}=\|f\|_{Y}αF1+(1α)F2X=fY. It follows α F 1 + ( 1 α ) F 2 E Y ( f ) α F 1 + ( 1 α ) F 2 E Y ( f ) alphaF_(1)+(1-alpha)F_(2)inE_(Y)(f)\alpha F_{1}+(1-\alpha) F_{2} \in E_{Y}(f)αF1+(1α)F2EY(f).
b) Let H E Y ( f ) H E Y ( f ) H inE_(Y)(f)H \in E_{Y}(f)HEY(f) and x X x X x in Xx \in XxX. We have, for any y Y , H ( x ) f ( y ) = H ( x ) H ( y ) H X d ( x , y ) = f Y d ( x , y ) y Y , H ( x ) f ( y ) = H ( x ) H ( y ) H X d ( x , y ) = f Y d ( x , y ) y in Y,H(x)-f(y)=H(x)-H(y) <= ||H||_(X)*d(x,y)=||f||_(Y)*d(x,y)y \in Y, H(x)-f(y)= H(x)-H(y) \leq\|H\|_{X} \cdot d(x, y)=\|f\|_{Y} \cdot d(x, y)yY,H(x)f(y)=H(x)H(y)HXd(x,y)=fYd(x,y) so that
H ( x ) f ( y ) + f Y d ( x , y ) H ( x ) f ( y ) + f Y d ( x , y ) H(x) <= f(y)+||f||_(Y)d(x,y)H(x) \leq f(y)+\|f\|_{Y} d(x, y)H(x)f(y)+fYd(x,y)
Taking the infimum with respect to y Y y Y y in Yy \in YyY we find
H ( x ) F ( x ) , for all x X . H ( x ) F ( x ) ,  for all  x X . H(x) <= F(x),quad" for all "x in X.H(x) \leq F(x), \quad \text { for all } x \in X .H(x)F(x), for all xX.
Also, we have
H ( y ) H ( x ) H X d ( y , x ) = f Y d ( y , x ) H ( y ) H ( x ) H X d ( y , x ) = f Y d ( y , x ) H(y)-H(x) <= ||H||_(X)*d(y,x)=||f||_(Y)*d(y,x)H(y)-H(x) \leq\|H\|_{X} \cdot d(y, x)=\|f\|_{Y} \cdot d(y, x)H(y)H(x)HXd(y,x)=fYd(y,x)
which implies
H ( x ) H ( y ) f Y d ( y , x ) = f ( y ) f Y d ( y , x ) H ( x ) H ( y ) f Y d ( y , x ) = f ( y ) f Y d ( y , x ) H(x) >= H(y)-||f||_(Y)*d(y,x)=f(y)-||f||_(Y)*d(y,x)H(x) \geq H(y)-\|f\|_{Y} \cdot d(y, x)=f(y)-\|f\|_{Y} \cdot d(y, x)H(x)H(y)fYd(y,x)=f(y)fYd(y,x)
Taking the supremum with respect to y Y y Y y in Yy \in YyY we get
H ( x ) G ( x ) , x X . H ( x ) G ( x ) , x X . H(x) >= G(x),quad x in X.H(x) \geq G(x), \quad x \in X .H(x)G(x),xX.
c) Let f ext B Y f ext B Y f in extB_(Y)f \in \operatorname{ext} B_{Y}fextBY. If F 1 , F 2 B X F 1 , F 2 B X F_(1),F_(2)inB_(X)F_{1}, F_{2} \in B_{X}F1,F2BX and λ ( 0 , 1 ) λ ( 0 , 1 ) lambda in(0,1)\lambda \in(0,1)λ(0,1) are such that λ F 1 + ( 1 λ ) F 2 E Y ( f ) λ F 1 + ( 1 λ ) F 2 E Y ( f ) lambdaF_(1)+(1-lambda)F_(2)inE_(Y)(f)\lambda F_{1}+ (1-\lambda) F_{2} \in E_{Y}(f)λF1+(1λ)F2EY(f) then λ F 1 | Y + ( 1 λ ) F 2 | Y = f λ F 1 Y + ( 1 λ ) F 2 Y = f lambdaF_(1)|_(Y)+(1-lambda)F_(2)|_(Y)=f\left.\lambda F_{1}\right|_{Y}+\left.(1-\lambda) F_{2}\right|_{Y}=fλF1|Y+(1λ)F2|Y=f. Since f ext B Y f ext B Y f in extB_(Y)f \in \operatorname{ext} B_{Y}fextBY this implies F 1 | Y = F 2 | Y = f F 1 Y = F 2 Y = f F_(1)|_(Y)=F_(2)|_(Y)=f\left.F_{1}\right|_{Y}=\left.F_{2}\right|_{Y}=fF1|Y=F2|Y=f. Obviously that F 1 X = F 2 X = f Y = 1 F 1 X = F 2 X = f Y = 1 ||F_(1)||_(X)=||F_(2)||_(X)=||f||_(Y)=1\left\|F_{1}\right\|_{X}=\left\|F_{2}\right\|_{X}=\|f\|_{Y}=1F1X=F2X=fY=1, showing that F 1 , F 2 E Y ( f ) F 1 , F 2 E Y ( f ) F_(1),F_(2)inE_(Y)(f)F_{1}, F_{2} \in E_{Y}(f)F1,F2EY(f). It follows that E Y ( f ) E Y ( f ) E_(Y)(f)E_{Y}(f)EY(f) is a face of B X B X B_(X)B_{X}BX.
We remark that F , G F , G F,GF, GF,G defined by (8), (9) are extremal elements of E Y ( f ) E Y ( f ) E_(Y)(f)E_{Y}(f)EY(f).
Indeed, if H 1 , H 2 E Y ( f ) H 1 , H 2 E Y ( f ) H_(1),H_(2)inE_(Y)(f)H_{1}, H_{2} \in E_{Y}(f)H1,H2EY(f) and λ ( 0 , 1 ) λ ( 0 , 1 ) lambda in(0,1)\lambda \in(0,1)λ(0,1) are such that λ H 1 + ( 1 λ ) H 2 = F λ H 1 + ( 1 λ ) H 2 = F lambdaH_(1)+(1-lambda)H_(2)=F\lambda H_{1}+(1-\lambda) H_{2}= FλH1+(1λ)H2=F then λ H 1 | Y + ( 1 λ ) H 2 | Y = f λ H 1 Y + ( 1 λ ) H 2 Y = f lambdaH_(1)|_(Y)+(1-lambda)H_(2)|_(Y)=f\left.\lambda H_{1}\right|_{Y}+\left.(1-\lambda) H_{2}\right|_{Y}=fλH1|Y+(1λ)H2|Y=f and because f ext B Y f ext B Y f in extB_(Y)f \in \operatorname{ext} B_{Y}fextBY it follows H 1 | Y = H 2 | Y = f = F | Y H 1 Y = H 2 Y = f = F Y H_(1)|_(Y)=H_(2)|_(Y)=f=F|_(Y)\left.H_{1}\right|_{Y}= \left.H_{2}\right|_{Y}=f=\left.F\right|_{Y}H1|Y=H2|Y=f=F|Y.
On the other hand λ H 1 ( x ) + ( 1 λ ) H 2 ( x ) = F ( x ) , x X λ H 1 ( x ) + ( 1 λ ) H 2 ( x ) = F ( x ) , x X lambdaH_(1)(x)+(1-lambda)H_(2)(x)=F(x),quad x in X\lambda H_{1}(x)+(1-\lambda) H_{2}(x)=F(x), \quad x \in XλH1(x)+(1λ)H2(x)=F(x),xX implies
λ ( H 1 ( x ) F ( x ) ) + ( 1 λ ) ( H 2 ( x ) F ( x ) ) = 0 , x X λ H 1 ( x ) F ( x ) + ( 1 λ ) H 2 ( x ) F ( x ) = 0 , x X lambda(H_(1)(x)-F(x))+(1-lambda)(H_(2)(x)-F(x))=0,quad x in X\lambda\left(H_{1}(x)-F(x)\right)+(1-\lambda)\left(H_{2}(x)-F(x)\right)=0, \quad x \in Xλ(H1(x)F(x))+(1λ)(H2(x)F(x))=0,xX
and because H 1 ( x ) F ( x ) , H 2 ( x ) F ( x ) , x X H 1 ( x ) F ( x ) , H 2 ( x ) F ( x ) , x X H_(1)(x) <= F(x),H_(2)(x) <= F(x),x in XH_{1}(x) \leq F(x), H_{2}(x) \leq F(x), x \in XH1(x)F(x),H2(x)F(x),xX and λ ( 0 , 1 ) λ ( 0 , 1 ) lambda in(0,1)\lambda \in(0,1)λ(0,1) it follows
H 1 ( x ) = F ( x ) , x X , H 2 ( x ) = F ( x ) , x X . H 1 ( x ) = F ( x ) ,      x X , H 2 ( x ) = F ( x ) ,      x X . {:[H_(1)(x)=F(x)",",x in X","],[H_(2)(x)=F(x)",",x in X.]:}\begin{array}{ll} H_{1}(x)=F(x), & x \in X, \\ H_{2}(x)=F(x), & x \in X . \end{array}H1(x)=F(x),xX,H2(x)=F(x),xX.
Consequently F ext E Y ( f ) F ext E Y ( f ) F in extE_(Y)(f)F \in \operatorname{ext} E_{Y}(f)FextEY(f). Analogously one obtains G ext E Y ( f ) G ext E Y ( f ) G in extE_(Y)(f)G \in \operatorname{ext} E_{Y}(f)GextEY(f).
Now let be given U 1 , U 2 B X U 1 , U 2 B X U_(1),U_(2)inB_(X)U_{1}, U_{2} \in B_{X}U1,U2BX and λ ( 0 , 1 ) λ ( 0 , 1 ) lambda in(0,1)\lambda \in(0,1)λ(0,1) such that λ U 1 + ( 1 λ ) U 2 = F λ U 1 + ( 1 λ ) U 2 = F lambdaU_(1)+(1-lambda)U_(2)=F\lambda U_{1}+(1-\lambda) U_{2}=FλU1+(1λ)U2=F. Then λ U 1 | Y + ( 1 λ ) U 2 | Y = F | Y = f ext B Y λ U 1 Y + ( 1 λ ) U 2 Y = F Y = f ext B Y lambdaU_(1)|_(Y)+(1-lambda)U_(2)|_(Y)=F|_(Y)=f in extB_(Y)\left.\lambda U_{1}\right|_{Y}+\left.(1-\lambda) U_{2}\right|_{Y}=\left.F\right|_{Y}=f \in \operatorname{ext} B_{Y}λU1|Y+(1λ)U2|Y=F|Y=fextBY implies U 1 | Y = U 2 | Y = f U 1 Y = U 2 Y = f U_(1)|_(Y)=U_(2)|_(Y)=f\left.U_{1}\right|_{Y}=\left.U_{2}\right|_{Y}=fU1|Y=U2|Y=f and U 1 | Y Y = U 2 | Y Y = f = 1 U 1 Y Y = U 2 Y Y = f = 1 ||U_(1)|_(Y)||_(Y)=||U_(2)|_(Y)||_(Y)=||f||=1\left\|\left.U_{1}\right|_{Y}\right\|_{Y}=\left\|\left.U_{2}\right|_{Y}\right\|_{Y}=\|f\|=1U1|YY=U2|YY=f=1 implies U 1 X = U 2 X = 1 U 1 X = U 2 X = 1 ||U_(1)||_(X)=||U_(2)||_(X)=1\left\|U_{1}\right\|_{X}=\left\|U_{2}\right\|_{X}=1U1X=U2X=1.
It follows that U 1 , U 2 E Y ( f ) U 1 , U 2 E Y ( f ) U_(1),U_(2)inE_(Y)(f)U_{1}, U_{2} \in E_{Y}(f)U1,U2EY(f) and because F ext E Y ( f ) F ext E Y ( f ) F in extE_(Y)(f)F \in \operatorname{ext} E_{Y}(f)FextEY(f) one obtains U 1 = U 2 = F U 1 = U 2 = F U_(1)=U_(2)=FU_{1}=U_{2}=FU1=U2=F. It follows that F ext B X F ext B X F in extB_(X)F \in \operatorname{ext} B_{X}FextBX and, analogously G ext B X G ext B X G in extB_(X)G \in \operatorname{ext} B_{X}GextBX.
Remarks. 1 1 1^(@)1^{\circ}1. The reverse implication in c) is also true: if E Y ( f ) E Y ( f ) E_(Y)(f)E_{Y}(f)EY(f) is a face of B X B X B_(X)B_{X}BX then f B Y f B Y f inB_(Y)f \in B_{Y}fBY.
Indeed, if f Y = 1 f Y = 1 ||f||_(Y)=1\|f\|_{Y}=1fY=1 but f ext B Y f ext B Y f!in extB_(Y)f \notin \operatorname{ext} B_{Y}fextBY, then there exist f 1 , f 2 B Y , f 1 f 2 f 1 , f 2 B Y , f 1 f 2 f_(1),f_(2)inB_(Y),f_(1)!=f_(2)f_{1}, f_{2} \in B_{Y}, f_{1} \neq f_{2}f1,f2BY,f1f2, and λ ( 0 , 1 ) λ ( 0 , 1 ) lambda in(0,1)\lambda \in(0,1)λ(0,1) such that λ f 1 + ( 1 λ ) f 2 = f λ f 1 + ( 1 λ ) f 2 = f lambdaf_(1)+(1-lambda)f_(2)=f\lambda f_{1}+(1-\lambda) f_{2}=fλf1+(1λ)f2=f.
Let F 1 E Y ( f 1 ) F 1 E Y f 1 F_(1)^(')inE_(Y)(f_(1))F_{1}^{\prime} \in E_{Y}\left(f_{1}\right)F1EY(f1) and F 2 E Y ( f 2 ) F 2 E Y f 2 F_(2)^(')inE_(Y)(f_(2))F_{2}^{\prime} \in E_{Y}\left(f_{2}\right)F2EY(f2). Because
λ F 1 | Y + ( 1 λ ) F 2 | Y = f λ F 1 Y + ( 1 λ ) F 2 Y = f lambdaF_(1)^(')|_(Y)+(1-lambda)F_(2)^(')|_(Y)=f\left.\lambda F_{1}^{\prime}\right|_{Y}+\left.(1-\lambda) F_{2}^{\prime}\right|_{Y}=fλF1|Y+(1λ)F2|Y=f
and
1 = λ F 1 | Y + ( 1 λ ) F 2 | Y λ F 1 + ( 1 λ ) F 2 X 1 1 = λ F 1 Y + ( 1 λ ) F 2 Y λ F 1 + ( 1 λ ) F 2 X 1 1=|| lambdaF_(1)^(')|_(Y)+(1-lambda)F_(2)^(')|_(Y)|| <= ||lambdaF_(1)^(')+(1-lambda)F_(2)^(')||_(X) <= 11=\left\|\left.\lambda F_{1}^{\prime}\right|_{Y}+\left.(1-\lambda) F_{2}^{\prime}\right|_{Y}\right\| \leq\left\|\lambda F_{1}^{\prime}+(1-\lambda) F_{2}^{\prime}\right\|_{X} \leq 11=λF1|Y+(1λ)F2|YλF1+(1λ)F2X1
we have
λ F 1 + ( 1 λ ) F 2 X = 1 , λ F 1 + ( 1 λ ) F 2 X = 1 , ||lambdaF_(1)^(')+(1-lambda)F_(2)^(')||_(X)=1,\left\|\lambda F_{1}^{\prime}+(1-\lambda) F_{2}^{\prime}\right\|_{X}=1,λF1+(1λ)F2X=1,
showing that λ F 1 + ( 1 λ ) F 2 E Y ( f ) λ F 1 + ( 1 λ ) F 2 E Y ( f ) lambdaF_(1)^(')+(1-lambda)F_(2)^(')inE_(Y)(f)\lambda F_{1}^{\prime}+(1-\lambda) F_{2}^{\prime} \in E_{Y}(f)λF1+(1λ)F2EY(f). Since F 1 | Y = f 1 f 2 = F 2 | Y F 1 Y = f 1 f 2 = F 2 Y F_(1)^(')|_(Y)=f_(1)!=f_(2)=F_(2)^(')|_(Y)\left.F_{1}^{\prime}\right|_{Y}=f_{1} \neq f_{2}=\left.F_{2}^{\prime}\right|_{Y}F1|Y=f1f2=F2|Y it follows that E Y ( f ) E Y ( f ) E_(Y)(f)E_{Y}(f)EY(f) is not a face of B X B X B_(X)B_{X}BX.
2 2 2^(@)2^{\circ}2. The assertion c) from Theorem 2 gives us a way to obtain extremal elements of B X B X B_(X)B_{X}BX, namely as the extensions (8) and (9) of extremal elements of B Y B Y B_(Y)B_{Y}BY.
Example. Consider the quasi metric space ( R , d ) ( R , d ) (R,d)(\mathbb{R}, d)(R,d), where R R R\mathbb{R}R is the set of real numbers and
d ( x , y ) = { x y if x y 1 if x < y d ( x , y ) = x y  if  x y 1  if  x < y d(x,y)={[x-y," if ",x >= y],[1," if ",x < y]:}d(x, y)=\left\{\begin{array}{cll} x-y & \text { if } & x \geq y \\ 1 & \text { if } & x<y \end{array}\right.d(x,y)={xy if xy1 if x<y
For Y = { 0 , 1 , 2 } Y = { 0 , 1 , 2 } Y={0,1,2}Y=\{0,1,2\}Y={0,1,2} and x 0 = 0 x 0 = 0 x_(0)=0x_{0}=0x0=0 consider the semilinear spaces S L i p 0 Y S L i p 0 Y SLip_(0)YS L i p_{0} YSLip0Y and S L i p 0 X S L i p 0 X SLip_(0)XS L i p_{0} XSLip0X equipped with the quasi-norms of the type (3).
The function f ( y ) = y , y { 0 , 1 , 2 } = Y f ( y ) = y , y { 0 , 1 , 2 } = Y f(y)=y,y in{0,1,2}=Yf(y)=y, y \in\{0,1,2\}=Yf(y)=y,y{0,1,2}=Y is an extremal element of B Y B Y B_(Y)B_{Y}BY. Observe that for any h B Y h B Y h inB_(Y)h \in B_{Y}hBY we have h ( 1 ) f ( 1 ) = 1 h ( 1 ) f ( 1 ) = 1 h(1) <= f(1)=1h(1) \leq f(1)=1h(1)f(1)=1 and h ( 2 ) f ( 2 ) = 2 h ( 2 ) f ( 2 ) = 2 h(2) <= f(2)=2h(2) \leq f(2)=2h(2)f(2)=2, because, if contrary, i.e. h ( 1 ) > f ( 1 ) h ( 1 ) > f ( 1 ) h(1) > f(1)h(1)>f(1)h(1)>f(1) or h ( 2 ) > f ( 2 ) h ( 2 ) > f ( 2 ) h(2) > f(2)h(2)>f(2)h(2)>f(2), then h Y > 1 h Y > 1 ||h||_(Y) > 1\|h\|_{Y}>1hY>1. If f 1 , f 2 B Y f 1 , f 2 B Y f_(1),f_(2)inB_(Y)f_{1}, f_{2} \in B_{Y}f1,f2BY and α ( 0 , 1 ) α ( 0 , 1 ) alpha in(0,1)\alpha \in(0,1)α(0,1) are such that α f 1 + ( 1 α ) f 2 = f α f 1 + ( 1 α ) f 2 = f alphaf_(1)+(1-alpha)f_(2)=f\alpha f_{1}+(1-\alpha) f_{2}=fαf1+(1α)f2=f then, taking into account the relations f i ( 0 ) = f ( 0 ) = 0 , f i ( 1 ) f ( 1 ) , f i ( 2 ) f ( 2 ) , i = 1 , 2 f i ( 0 ) = f ( 0 ) = 0 , f i ( 1 ) f ( 1 ) , f i ( 2 ) f ( 2 ) , i = 1 , 2 f_(i)(0)=f(0)=0,f_(i)(1) <= f(1),f_(i)(2) <= f(2),i=1,2f_{i}(0)=f(0)=0, f_{i}(1) \leq f(1), f_{i}(2) \leq f(2), i=1,2fi(0)=f(0)=0,fi(1)f(1),fi(2)f(2),i=1,2, we get α ( f 1 f ) + ( 1 α ) ( f 2 f ) = 0 α f 1 f + ( 1 α ) f 2 f = 0 alpha(f_(1)-f)+(1-alpha)(f_(2)-f)=0\alpha\left(f_{1}-f\right)+(1-\alpha)\left(f_{2}-f\right)=0α(f1f)+(1α)(f2f)=0 implying f 1 = f 2 = f f 1 = f 2 = f f_(1)=f_(2)=ff_{1}=f_{2}=ff1=f2=f.
In this case the extensions F F FFF and G G GGG, given by (8) and (9), are
F ( x ) = { 1 , for x ( , 0 ) x , for x [ 0 , + ) respectively G ( x ) = { x , for x ( , 2 ] 1 , for x ( 2 , + ) F ( x ) = 1 ,       for  x ( , 0 ) x ,       for  x [ 0 , + )  respectively  G ( x ) = x ,       for  x ( , 2 ] 1 ,       for  x ( 2 , + ) F(x)={[1","," for "x in(-oo","0)],[x","," for "x in[0","+oo)]" respectively "G(x)={[x","," for "x in(-oo","2]],[1","," for "x in(2","+oo)]:}F(x)=\left\{\begin{array}{ll} 1, & \text { for } x \in(-\infty, 0) \\ x, & \text { for } x \in[0,+\infty) \end{array} \text { respectively } G(x)= \begin{cases}x, & \text { for } x \in(-\infty, 2] \\ 1, & \text { for } x \in(2,+\infty)\end{cases}\right.F(x)={1, for x(,0)x, for x[0,+) respectively G(x)={x, for x(,2]1, for x(2,+)
and they are extremal elements of B X B X B_(X)B_{X}BX.

REFERENCES

[1] Cobzaş, S. and Mustăţa, C., Norm preserving extension of convex Lipschitz functions, J. Approx. Theory, 24, pp. 555-564, 1978.
[2] Cobzaş, S., Extreme points in Banach spaces of Lipschitz functions, Mathematica, 31 (54), pp. 25-33, 1989.
[3] Farmer, J. D., Extreme points of the unit ball of the space of Lipschitz functions, Proc. Amer. Math. Soc., 121, no. 3, pp. 807-813, 1994.
[4] Krein, M. G. and A. A. Nudel'man, The Markov Moment Problem and Extremum Problems, Nauka, Moscow, 1973, (in Russian).
[5] Koppermann, R. D., All topologies come from generalized metrics, Amer. Math. Monthly, 95, pp. 89-97, 1988.
[6] McShane, E. J., Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837842, 1934.
[7] MustĂta, C., Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19, pp. 222-230, 1977.
[8] Mustăţa, C., Uniquenness of the extension of semi-Lipschitz functions on quasi-metric spaces, Bull. Şt. Univ. Baia Mare, Mat.-Inf., XVI, no. 2, pp. 207-212, 2000.
[9] MustĂţA, C., Extension of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., 2001 (to appear). 주
[10] Phelps, R. R., Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc., 95, pp. 238-255, 1960.
[11] Rao, N. V. and Roy, A. K., Extreme Lipschitz functions, Math. Ann., 189, pp. 26-46, 1970.
[12] Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric space, J. Approx. Theory, 103, pp. 293-301, 2000.
[13] Roy, A. K., Extreme points and linear isometries of Banach spaces of Lipschitz functions, Canad. J. Math., 20, pp. 1150-1164, 1968.
[14] Wells, J. H. and Williams, L. R., Embedings and Extensions in Analysis, SpringerVerlag, Berlin, 1975.
Received by the editors: September 26, 2001.

  1. *"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: cmustata@ictp.acad.ro.
2002

Related Posts