Abstract
We present a semilocal convergence result for a Newton-type method applied to a polynomial operator equation of degree (2).
The method consists in fact in evaluating the Jacobian at every two steps, and it has the r-convergence order at least (3). We apply the method in order to approximate the eigenpairs of matrices.
We perform some numerical examples on some test matrices and compare the method with the Chebyshev method. The norming function we have proposed in a previous paper shows a better convergence of the iterates than the classical norming function for both the methods.
Authors
Emil Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis)
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Keywords
nonlinear equations; abstract polynomial equations of degree 2; r-convergence order.
Cite this paper as:
E. Cătinaş, I. Păvăloiu, On a third order iterative method for solving polynomial operator equations, Rev. Anal. Numér. Théor. Approx., 31 (2002) no. 1, pp. 21-28.
Scanned paper.
PDF-LaTeX version of the paper (soon).
About this paper
Publisher Name
Article on the journal website
Print ISSN
1222-9024
Online ISSN
2457-8126
MR
1222-9024
Online ISSN
2457-8126
Google Scholar citations
[2] I.K. Argyros, Quadratic equations and applications to Chandrasekhar’s and related equations , Bull. Austral. Math. Soc., 38 (1988), pp. 275–292.
[3] E. Catinas and I. Pavaloiu, On the Chebyshev method for approximating the eigenvalues of linear operators, Rev. Anal. Num ́er. Th ́eor. Approx., 25 (1996) nos. 1–2, pp. 43-56.
[4] E. Catinas and I. Pavaloiu, On a Chebyshev-type method for approximating the solutions of polynomial operator equations of degree 2, Proceedings of International Conference on Approximation and Optimization, Cluj-Napoca, July 29 – august 1, 1996, vol. 1, pp. 219-226.
[5] E. Catinas and I. Pavaloiu, On approximating the eigenvalues and eigenvectors of linear continuous operators, Rev. Anal. Num ́er. Th ́eor. Approx., 26 (1997) nos. 1–2, pp. 19–27.
[6] E. Catinas and I. Pavaloiu, On some interpolatory iterative methods for the second degree polynomial operators (I), Rev. Anal. Num ́er. Th ́eor. Approx., 27(1998) no. 1, pp. 33-45.
[7] E. Catinas and I. Pavaloiu, On some interpolatory iterative methods for the second degree polynomial operators (II) , Rev. Anal. Num ́er. Th ́eor. Approx., 28 (1999) no. 2, pp. 133-143.
[8] L. Collatz, Functionalanalysis und Numerische Mathematik, Springer-Verlag, Berlin,1964.
[9] A. Diaconu, On the convergence of an iterative method of Chebyshev type, Rev. Anal. Numer. Theor. Approx. 24 (1995) nos. 1–2, pp. 91–102.
[10] J.J. Dongarra, C.B. Moler and J.H. Wilkinson, Improving the accuracy of the computed eigenvalues and eigenvectors , SIAM J. Numer. Anal., 20 (1983) no. 1, pp. 23–45.
[11] S.M. Grzegorski, On the scaled Newton method for the symmetric eigenvalue problem, Computing, 45 (1990), pp. 277–282.
[12] V.S. Kartisov and F.L. Iuhno, O nekotorih Modifikat ̧ah Metoda Niutona dlea Resenia Nelineinoi Spektralnoi Zadaci, J. Vicisl. matem. i matem. fiz., 33 (1973) no. 9, pp. 1403–1409 (in Russian).
[13] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables , Academic Press, New York, 1970.