On the flow of a viscous thin layer on an inclined solid plane driven by a constant surface tension gradient

Abstract

Steady flow of a thin layer (trickle, rivulet) of viscous fluid down an inclined surface is considered, via a thin-film approximation. The work extends the study by Duffy and Moffatt [7] of gravity-driven thin trickle of viscous fluid to include the effects of a surface tension gradient. It acts on the free surface of the layer. At the same time the work tries an alternative analysis to our traditional approaches exposed in [6] and the papers quoted there. Asymptotic and numerical results for several values of volume flux and surface tension gradients are carried out.

Authors

C.I. Gheorghiu
Tiberiu Popoviciu Institute of Numerical Analysis
Emilia Borşa

University of Oradea

Keywords

viscous flow; thin film approximation; surface tension gradien

References

See the expanding block below.

Cite this paper as

C.I. Gheorghiu, E. Borşa, On the flow of a viscous thin layer on an inclined solid plane driven by a constant surface tension gradient, Rev. Anal. Numér. Théor. Approx. 30 (2001) 127-134, https://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no2-art2

PDF

About this paper

Journal

Rev. Anal. Numér. Théor. Approx.

Publisher Name

Editions de l’Academie Roumaine

Article on journal website
Print ISSN

1222-9024

Online ISSN

2457-8126

MR

?

ZBL

?

Google Scholar

?

[1] Achenson, D. J., Elementary Fluid Dynamics, Oxford University Press, Oxford, United Kingdom, pp. 238–259, 1990.
[2] Allen, R. F. and Biggin, C. M., Longitudinal flow of a lenticular liquid filament down an inclined plane, Phys. Fluids, 17, pp. 287–291, 1974.
[3] Amick, C. J., Properties of steady Navier–Stokes solutions for certain unbounded channels and pipes, Nonlinear Anal., 2, pp. 689–720, 1978.
[4] Amick, C. J. and Fraenkel, L. E., Steady Solutions of the Navier–Stokes Equations Representing Plane Flow in Channels of Various Types , Acta Math., 144, pp. 83–152,1980.
[5] Aris, R., Vector, Tensors and the Basic Equations of Fluid Mechanics, Englewood Cliffs, New Jersey, 1962.
[6] Chifu, E., Gheorghiu, C. I. and Stan, I., Surface mobility of surfactant solutions XI. Numerical analysis for the Marangoni and gravity flow in a thin liquid layer of triangular  section , Rev. Roumaine Chim., 29 no. 1, pp. 31 42, 1984.
[7] Duffy, B. R. and Moffatt, H. K., Flow of a viscous trickle on a slowly varying, The Chemical Engineering Journal, 60 , pp. 141–146, 1995.
[8] Georgescu, A., Asymptotic Analysis, Ed. Tehnicˇa, Bucharest, 1989.
[9] Gheorghiu, C. I., An unified treatment of boundary layer and lubrication approximations in viscous fluid mechanics, Rev. Anal. Numer. Theor. Approx., to appear.
[10] Levich, V. G., Physico-Chemical Hydrodynamics, Englewood Cliffs, New Jersey, 1967.
[11] Ockendon, H. and Ockendon, J. R., Viscous Flow, Cambridge, University Press, 1995.
[12] Sorensen, T. S., Hennenberg, M., Steinchen–Sanfeld, A. and Sanfeld, A., Surface chemical and hydrodynamic stability, Progr. Colloid and Polymer Sci.,61, pp. 64–70, 1976.
[13] Towell, G. D. and Rothfeld, L. B., Hydrodynamics of rivulet flow, AICHE. J., 12, p. 972, 1966.
[14] Wagner, A., Instationary Marangoni convection, Preprint, SFB 359, Univ. Heidelberg, pp. 94–42, 1994.
[15] Wilson, S. K. and Duffy, B. R., On the gravity-driven draining of a rivulet of viscous fluid down a slowly varying substrate with variation transverse to the direction of flow, Phys. Fluids, 10, pp.13-22, 1998.
[16] Whitaker, S., Effect of surface active agents on the stability of fal ling liquid films, I and EC Fundamentals, 3, pp. 132–142, 1964.

Paper (preprint) in HTML form

jnaat,+Journal+manager,+2001-2-Borsa-Gheorghiu-15-10-29

ON THE FLOW OF A VISCOUS THIN LAYER ON AN INCLINED PLANE DRIVEN BY A CONSTANT SURFACE TENSION GRADIENT

EMILIA BORŞA* and CǍLIN IOAN GHEORGHIU ^(†){ }^{\dagger}

Abstract

Steady flow of a thin layer (trickle, rivulet) of viscous fluid down an inclined surface is considered, via a thin-film approximation. The work extends the study by Duffy and Moffatt [7] of gravity-driven thin trickle of viscous fluid to include the effects of a surface tension gradient. It acts on the free surface of the layer. At the same time the work tries an alternative analysis to our traditional approaches exposed in [6] and the papers quoted there. Asymptotic and numerical results for several values of volume flux and surface tension gradients are carried out.

MSC 2000. 76D08, 76D45, 76M55.
Keywords. viscous flow, thin film approximation, surface tension gradient.

1. INTRODUCTION

Many viscous flow problems of practical importance involve small scale flows with free surface whose effects contribute significantly to the dynamics through superficial forces. One prototype problem that has received much attention is that of the draining of viscous layers down an inclined plane driven simultaneously by a surface tension gradient.
We consider the steady behavior of such a trickle of viscous liquid (which we take to be supplied at a prescribed volume flux) when the surface tension gradient is constant. We are particularly interested in the study of Marangoni effect. More specific, we take into account a non-zero tangential (shear) stress and use a lubrication (thin-film) approximation. This approximation linearizes the Navier-Stokes system and enables us to obtain the velocity field, the freesurface velocity, the pressure and the free-surface profile in closed form.

2. PROBLEM FORMULATION AND THE FLOW SOLUTION

Consider the flow of a uniform thin liquid layer (rivulet) down an inclined solid plane driven simultaneously by a surface tension gradient. This gradient acts on the free surface (the upper of the rivulet) and due to viscous forces can drag the fluid up or down on the incline. Suppose a Newtonian fluid, of constant density ρ ρ rho\rhoρ and viscosity μ μ mu\muμ, which undergoes a steady rectilinear flow in the form of a filament, down a plane inclined at an angle α α alpha\alphaα to the horizontal.
With respect to the Cartesian coordinates system Oxyz as indicated in Fig.1, the velocity of this locally unidirectional flow will be of the form u = u ( y , z ) i u = u ( y , z ) i vec(u)=u(y,z) vec(i)\vec{u}= u(y, z) \vec{i}u=u(y,z)i and the Navier-Stokes equations reduce to
(1) { 0 = p x + ρ g sin α + μ ( u y y + u z z ) 0 = p y 0 = p z p g cos α (1) 0 = p x + ρ g sin α + μ u y y + u z z 0 = p y 0 = p z p g cos α {:(1){[0=-p_(x)+rho*g*sin alpha+mu*(u_(yy)+u_(zz))],[0=-p_(y)],[0=-p_(z)-p*g*cos alpha]:}:}\left\{\begin{array}{l} 0=-p_{x}+\rho \cdot g \cdot \sin \alpha+\mu \cdot\left(u_{y y}+u_{z z}\right) \tag{1}\\ 0=-p_{y} \\ 0=-p_{z}-p \cdot g \cdot \cos \alpha \end{array}\right.(1){0=px+ρgsinα+μ(uyy+uzz)0=py0=pzpgcosα
where the subscripts denote partial differentiation.
Fig. 1: A trickle (rivulet) of viscous fluid, of width 2 a 2 a 2a2 a2a and maximum depth h m := h ( 0 ) h m := h ( 0 ) h_(m):=h(0)h_{m}:=h(0)hm:=h(0) flowing down an inclined plane at an angle α α alpha\alphaα to the horizontal.
In the thin-film (lubrication) theory, (see, for example, Acheson [1], Ockendon and Ockendon [11], or Gheorghiu [9]) these equations reduce to
(2) { 0 = p x + ρ g sin α + μ u z z 0 = p y 0 = p z ρ g cos α (2) 0 = p x + ρ g sin α + μ u z z 0 = p y 0 = p z ρ g cos α {:(2){[0=-p_(x)+rho*g*sin alpha+mu*u_(zz)],[0=-p_(y)],[0=-p_(z)-rho*g*cos alpha]:}:}\left\{\begin{array}{l} 0=-p_{x}+\rho \cdot g \cdot \sin \alpha+\mu \cdot u_{z z} \tag{2}\\ 0=-p_{y} \\ 0=-p_{z}-\rho \cdot g \cdot \cos \alpha \end{array}\right.(2){0=px+ρgsinα+μuzz0=py0=pzρgcosα
and are to be integrated subject to the boundary conditions
(3) u = 0 , on z = 0 (3) u = 0 ,  on  z = 0 {:(3) vec(u)=0","" on "z=0:}\begin{equation*} \vec{u}=0, \text { on } z=0 \tag{3} \end{equation*}(3)u=0, on z=0
(4) p p a = γ ¯ ( H + h ) μ u z = τ ( Levich-Aris boundary condition ) } on z = ( H + h ) ( y ) . (4) p p a = γ ¯ ( H + h ) μ u z = τ (  Levich-Aris boundary condition  )  on  z = ( H + h ) ( y ) . {:(4){:[p-p_(a)=- bar(gamma)*(H+h)^('')],[mu*u_(z)=tau(" Levich-Aris boundary condition ")]}" on "z=(H+h)(y).:}\left.\begin{array}{l} p-p_{a}=-\bar{\gamma} \cdot(H+h)^{\prime \prime} \tag{4}\\ \mu \cdot u_{z}=\tau(\text { Levich-Aris boundary condition }) \end{array}\right\} \text { on } z=(H+h)(y) .(4)ppa=γ¯(H+h)μuz=τ( Levich-Aris boundary condition )} on z=(H+h)(y).
Here z = H ( y ) z = H ( y ) z=H(y)z=H(y)z=H(y) is the known equation of the transverse profile of the substrate (the bottom line) and z = h ( y ) z = h ( y ) z=h(y)z=h(y)z=h(y) is the unknown equation of the transverse profile of the free surface. When the substrate is an inclined plane H ( y ) H ( y ) H(y)H(y)H(y) becomes identically zero.
We impose the following contact conditions:
(5) { h = 0 h = ± tan β , at y ± a . (5) h = 0 h = ± tan β ,  at  y ± a . {:(5){[h=0],[h^(')=+-tan beta","" at "y+-a.]:}:}\left\{\begin{array}{l} h=0 \tag{5}\\ h^{\prime}= \pm \tan \beta, \text { at } y \pm a . \end{array}\right.(5){h=0h=±tanβ, at y±a.
Here again z = h ( y ) z = h ( y ) z=h(y)z=h(y)z=h(y) is the free-surface profile, p p ppp is the pressure in the liquid, p a p a p_(a)p_{a}pa is the atmospheric pressure, g g vec(g)\vec{g}g is the gravitational acceleration, γ ¯ γ ¯ bar(gamma)\bar{\gamma}γ¯ is the reference value of surface tension, β β beta\betaβ is the contact angle at the three-phase contact line, 2 a 2 a 2a2 a2a is the width of the layer (trickle), h m h m h_(m)h_{m}hm is the maximum depth of the liquid, and τ τ tau\tauτ is the constant shear stress acting on z = h ( y ) z = h ( y ) z=h(y)z=h(y)z=h(y).
We consider β β beta\betaβ to be a prescribed constant such that β < π / 2 β < π / 2 beta < pi//2\beta<\pi / 2β<π/2. A constant value of β β beta\betaβ means that any contact angle "hysteresis" is ignored. We appreciate this hypothesis as reasonable for these rivulets. On the physical nature of the shear stress τ τ tau\tauτ we have to make the following important remark. The origin of τ τ tau\tauτ could be very diverse. We are mainly interested when this stress comes from a local variation of surface tension, such that τ = γ x τ = γ x tau=(del gamma)/(del x)\tau=\frac{\partial \gamma}{\partial x}τ=γx. Actually, γ γ gamma\gammaγ may vary somewhat along x x xxx-axis and then the flow will not be truly unidirectional. However, the above approach may still be approximately correct if γ γ gamma\gammaγ varies only slowly. A more sophisticated model that takes into account reactions, fluxes of surfactants on the free surface, surface diffusion and convection, change of metrics, etc., is available for example in [14]. To consider such models is beyond our computational capabilities. Consequently, we simply solve the differential system (2)-(5), using the strategy from Wilson and Duffy [15] and finally plug in γ x γ x (del gamma)/(del x)\frac{\partial \gamma}{\partial x}γx for the shear stress τ τ tau\tauτ.
About the boundary condition (4) we observe that we have taken the surface curbature to be h h h^('')h^{\prime \prime}h. The boundary condition (4) makes the difference between our study and those of Allen and Biggin [2], Duffy and Moffatt [7], Towel and Rothfeld[13], or Wilson and Duffy [15]. It means that the Marangoni effect is taken into account. Some mathematical aspects (existence, uniqueness, etc.) of this effect are addressed in Amick [3], Amick and Fraenkel [4] and Wagner [14].
With respect to the angle to the horizontal, we consider the following three cases:
i). 0 < α < π 2 0 < α < π 2 0 < alpha < (pi)/(2)0<\alpha<\frac{\pi}{2}0<α<π2,
ii) α = π 2 α = π 2 alpha=(pi)/(2)\alpha=\frac{\pi}{2}α=π2,
iii) π 2 < α < π π 2 < α < π (pi)/(2) < alpha < pi\frac{\pi}{2}<\alpha<\piπ2<α<π.
Then the solution read as follows: the velocity
(6) u ( y , z ) = ρ g sin α 2 μ ( z 2 + 2 z h ) + 1 μ γ x z (6) u ( y , z ) = ρ g sin α 2 μ z 2 + 2 z h + 1 μ γ x z {:(6)u(y","z)=(rho*g*sin alpha)/(2mu)(-z^(2)+2zh)+(1)/(mu)(del gamma)/(del x)*z:}\begin{equation*} u(y, z)=\frac{\rho \cdot g \cdot \sin \alpha}{2 \mu}\left(-z^{2}+2 z h\right)+\frac{1}{\mu} \frac{\partial \gamma}{\partial x} \cdot z \tag{6} \end{equation*}(6)u(y,z)=ρgsinα2μ(z2+2zh)+1μγxz
the free-surface velocity, u s := u ( y , h ) u s := u ( y , h ) u_(s):=u(y,h)u_{s}:=u(y, h)us:=u(y,h),
(7) u s = ρ g sin α 2 μ h 2 + 1 μ γ x h (7) u s = ρ g sin α 2 μ h 2 + 1 μ γ x h {:(7)u_(s)=(rho*g*sin alpha)/(2mu)*h^(2)+(1)/(mu)(del gamma)/(del x)*h:}\begin{equation*} u_{s}=\frac{\rho \cdot g \cdot \sin \alpha}{2 \mu} \cdot h^{2}+\frac{1}{\mu} \frac{\partial \gamma}{\partial x} \cdot h \tag{7} \end{equation*}(7)us=ρgsinα2μh2+1μγxh
and the pressure is
(8) p ( z ) = p a ρ g z cos α + tan β ρ g γ ¯ | cos α | { coth B , α ( 0 , π 2 ) B 1 , α = π 2 cot B , α ( π 2 , π ) . p ( z ) = p a ρ g z cos α + tan β ρ g γ ¯ | cos α | coth B ,      α 0 , π 2 B 1 ,      α = π 2 cot B ,      α π 2 , π . p(z)=p_(a)-rho*g*z*cos alpha+tan betasqrt(rho*g* bar(gamma)*|cos alpha|)*{[coth B",",alpha in(0,(pi)/(2))],[B^(-1)",",alpha=(pi)/(2)],[cot B",",alpha in((pi)/(2),pi).]:}p(z)=p_{a}-\rho \cdot g \cdot z \cdot \cos \alpha+\tan \beta \sqrt{\rho \cdot g \cdot \bar{\gamma} \cdot|\cos \alpha|} \cdot \begin{cases}\operatorname{coth} B, & \alpha \in\left(0, \frac{\pi}{2}\right) \\ B^{-1}, & \alpha=\frac{\pi}{2} \\ \cot B, & \alpha \in\left(\frac{\pi}{2}, \pi\right) .\end{cases}p(z)=paρgzcosα+tanβρgγ¯|cosα|{cothB,α(0,π2)B1,α=π2cotB,α(π2,π).
The free-surface profile z = h ( y ) z = h ( y ) z=h(y)z=h(y)z=h(y) is given by
(9) ( ρ g | cos α | γ ¯ ) 1 2 h tan β = { cosh B cosh B ξ sinh B , α ( 0 , π 2 ) 1 2 B ( 1 ξ 2 ) , α = π 2 cos B ξ cos B sin B , α ( π 2 , π ) (9) ρ g | cos α | γ ¯ 1 2 h tan β = cosh B cosh B ξ sinh B , α 0 , π 2 1 2 B 1 ξ 2 , α = π 2 cos B ξ cos B sin B , α π 2 , π {:(9)((rho*g*|cos alpha|)/(( bar(gamma))))^((1)/(2))(h)/(tan beta)={[(cosh B-cosh B xi)/(sinh B)",",alpha in(0,(pi)/(2))],[(1)/(2)B(1-xi^(2))",",alpha=(pi)/(2)],[(cos B xi-cos B)/(sin B)",",alpha in((pi)/(2),pi)]:}:}\left(\frac{\rho \cdot g \cdot|\cos \alpha|}{\bar{\gamma}}\right)^{\frac{1}{2}} \frac{h}{\tan \beta}= \begin{cases}\frac{\cosh B-\cosh B \xi}{\sinh B}, & \alpha \in\left(0, \frac{\pi}{2}\right) \tag{9}\\ \frac{1}{2} B\left(1-\xi^{2}\right), & \alpha=\frac{\pi}{2} \\ \frac{\cos B \xi-\cos B}{\sin B}, & \alpha \in\left(\frac{\pi}{2}, \pi\right)\end{cases}(9)(ρg|cosα|γ¯)12htanβ={coshBcoshBξsinhB,α(0,π2)12B(1ξ2),α=π2cosBξcosBsinB,α(π2,π)
where B B BBB is the Bond number for the flow, B 0 B 0 B!=0B \neq 0B0 for α π / 2 α π / 2 alpha!=pi//2\alpha \neq \pi / 2απ/2,
(10) B = a ( ρ g | cos α | γ ¯ ) 1 2 > 0 and B = 0 , for α = π 2 and ξ = y a , ξ [ 1 , 1 ] (10) B = a ρ g | cos α | γ ¯ 1 2 > 0  and  B = 0 ,  for  α = π 2  and  ξ = y a , ξ [ 1 , 1 ] {:(10)B=a((rho*g*|cos alpha|)/(( bar(gamma))))^((1)/(2)) > 0" and "B=0","" for "alpha=(pi)/(2)" and "xi=(y)/(a)","xi in[-1","1]:}\begin{equation*} B=a\left(\frac{\rho \cdot g \cdot|\cos \alpha|}{\bar{\gamma}}\right)^{\frac{1}{2}}>0 \text { and } B=0, \text { for } \alpha=\frac{\pi}{2} \text { and } \xi=\frac{y}{a}, \xi \in[-1,1] \tag{10} \end{equation*}(10)B=a(ρg|cosα|γ¯)12>0 and B=0, for α=π2 and ξ=ya,ξ[1,1]
The maximum depth h m h m h_(m)h_{m}hm of the liquid, h m := h ( 0 ) h m := h ( 0 ) h_(m):=h(0)h_{m}:=h(0)hm:=h(0) satisfies
(11) ( p g | cos α | γ ¯ ) 1 2 h m tan β = { tanh 1 2 B , α ( 0 , π 2 ) 1 2 B , α = π 2 tan 1 2 B , α ( π 2 , π ) (11) p g | cos α | γ ¯ 1 2 h m tan β = tanh 1 2 B , α 0 , π 2 1 2 B , α = π 2 tan 1 2 B , α π 2 , π {:(11)((p*g*|cos alpha|)/(( bar(gamma))))^((1)/(2))*(h_(m))/(tan beta)={[tanh((1)/(2)B)",",alpha in(0,(pi)/(2))],[(1)/(2)B",",alpha=(pi)/(2)],[tan((1)/(2)B)",",alpha in((pi)/(2),pi)]:}:}\left(\frac{p \cdot g \cdot|\cos \alpha|}{\bar{\gamma}}\right)^{\frac{1}{2}} \cdot \frac{h_{m}}{\tan \beta}= \begin{cases}\tanh \frac{1}{2} B, & \alpha \in\left(0, \frac{\pi}{2}\right) \tag{11}\\ \frac{1}{2} B, & \alpha=\frac{\pi}{2} \\ \tan \frac{1}{2} B, & \alpha \in\left(\frac{\pi}{2}, \pi\right)\end{cases}(11)(pg|cosα|γ¯)12hmtanβ={tanh12B,α(0,π2)12B,α=π2tan12B,α(π2,π)
The scales of h m h m h_(m)h_{m}hm and a a aaa in eqs. (10) and (11) differ essentially by the small factor tan β tan β tan beta\tan \betatanβ (and indeed in case ii) h m / a = 1 2 tan β h m / a = 1 2 tan β h_(m)//a=(1)/(2)tan betah_{m} / a=\frac{1}{2} \tan \betahm/a=12tanβ ). This reflects the fact that the depth of the layer is much less than its width. The solution is physically sensible only for h ( y ) 0 h ( y ) 0 h(y) >= 0h(y) \geq 0h(y)0.
The volume flux of liquid running down the plane is
(12) Q = a a a h ( y ) u d z d y = ρ g sin α 3 μ a a h 3 ( y ) d y + 1 2 μ γ x a a h 2 ( y ) d y (12) Q = a a a h ( y ) u d z d y = ρ g sin α 3 μ a a h 3 ( y ) d y + 1 2 μ γ x a a h 2 ( y ) d y {:(12)Q=int_(-a)^(a)int_(a)^(h(y))udzdy=(rho*g*sin alpha)/(3mu)int_(-a)^(a)h^(3)(y)dy+(1)/(2mu)(del gamma)/(del x)int_(-a)^(a)h^(2)(y)dy:}\begin{equation*} Q=\int_{-a}^{a} \int_{a}^{h(y)} u d z d y=\frac{\rho \cdot g \cdot \sin \alpha}{3 \mu} \int_{-a}^{a} h^{3}(y) d y+\frac{1}{2 \mu} \frac{\partial \gamma}{\partial x} \int_{-a}^{a} h^{2}(y) d y \tag{12} \end{equation*}(12)Q=aaah(y)udzdy=ρgsinα3μaah3(y)dy+12μγxaah2(y)dy
It is convenient to introduce appropriate nondimensional variables defined by: x = x a , y = y a , z = z a h = h a , γ = γ γ ¯ , u = u U , p = p P x = x a , y = y a , z = z a h = h a , γ = γ γ ¯ , u = u U , p = p P x^(**)=(x)/(a),y^(**)=(y)/(a),z^(**)=(z)/(a)h^(**)=(h)/(a),gamma^(**)=(gamma)/(( bar(gamma))),u^(**)=(u)/(U),p^(**)=(p)/(P)x^{*}=\frac{x}{a}, y^{*}=\frac{y}{a}, z^{*}=\frac{z}{a} h^{*}=\frac{h}{a}, \gamma^{*}=\frac{\gamma}{\bar{\gamma}}, u^{*}=\frac{u}{U}, p^{*}=\frac{p}{P}x=xa,y=ya,z=zah=ha,γ=γγ¯,u=uU,p=pP (where P = ρ g a P = ρ g a P=rho gaP=\rho g aP=ρga is the reference pressure), Q = Q Q ¯ Q = Q Q ¯ Q^(**)=(Q)/(( bar(Q)))Q^{*}=\frac{Q}{\bar{Q}}Q=QQ¯, where Q ¯ = U a 2 Q ¯ = U a 2 bar(Q)=Ua^(2)\bar{Q}=U a^{2}Q¯=Ua2.
The Reynolds number is Re = U L ν = U L ρ μ Re = U L ν = U L ρ μ Re=(UL)/(nu)=(UL rho)/(mu)\operatorname{Re}=\frac{U L}{\nu}=\frac{U L \rho}{\mu}Re=ULν=ULρμ and the Weber number is W e = ρ ρ L U 2 W e = ρ ρ L U 2 We=(rho)/(rho LU^(2))W e= \frac{\rho}{\rho L U^{2}}We=ρρLU2, where we assume ν = μ ρ , σ = γ ¯ , L = a ν = μ ρ , σ = γ ¯ , L = a nu=(mu )/(rho),sigma= bar(gamma),L=a\nu=\frac{\mu}{\rho}, \sigma=\bar{\gamma}, L=aν=μρ,σ=γ¯,L=a and U = ρ g a 2 sin α μ U = ρ g a 2 sin α μ U=(rho ga^(2)sin alpha)/(mu)U=\frac{\rho g a^{2} \sin \alpha}{\mu}U=ρga2sinαμ. Consequently, Re = L g ρ 2 a 2 sin α μ 2 , W e = ρ μ 2 ρ 3 L g 2 a 4 sin α Re = L g ρ 2 a 2 sin α μ 2 , W e = ρ μ 2 ρ 3 L g 2 a 4 sin α Re=(Lgrho^(2)a^(2)sin alpha)/(mu^(2)),We=(rhomu^(2))/(rho^(3)Lg^(2)a^(4)sin alpha)\operatorname{Re}=\frac{L g \rho^{2} a^{2} \sin \alpha}{\mu^{2}}, W e=\frac{\rho \mu^{2}}{\rho^{3} L g^{2} a^{4} \sin \alpha}Re=Lgρ2a2sinαμ2,We=ρμ2ρ3Lg2a4sinα and then Re W e = ρ ρ g a 2 Re W e = ρ ρ g a 2 Re*We=(rho)/(rho ga^(2))\operatorname{Re} \cdot W e=\frac{\rho}{\rho g a^{2}}ReWe=ρρga2. With the Bond number B o 1 = ρ g L 2 σ B o 1 = ρ g L 2 σ Bo_(1)=(rho gL^(2))/(sigma)B o_{1}=\frac{\rho g L^{2}}{\sigma}Bo1=ρgL2σ, which relates the gravitational forces g g ggg to the cappilarity, the nondimensional velocity of the fluid is given by
(13) u = ( 2 z h z 2 ) + 1 B o 1 γ x z (13) u = 2 z h z 2 + 1 B o 1 γ x z {:(13)u^(**)=(2z^(**)h^(**)-z^(**2))+(1)/(Bo_(1))(delgamma^(**))/(delx^(**))z^(**):}\begin{equation*} u^{*}=\left(2 z^{*} h^{*}-z^{* 2}\right)+\frac{1}{B o_{1}} \frac{\partial \gamma^{*}}{\partial x^{*}} z^{*} \tag{13} \end{equation*}(13)u=(2zhz2)+1Bo1γxz
The nondimensional free surface velocity is
(14) u s = 1 2 h 2 + 1 B o 1 sin α γ x h (14) u s = 1 2 h 2 + 1 B o 1 sin α γ x h {:(14)u_(s)^(**)=(1)/(2)h^(**2)+(1)/(Bo_(1)sin alpha)(delgamma^(**))/(delx^(**))h^(**):}\begin{equation*} u_{s}^{*}=\frac{1}{2} h^{* 2}+\frac{1}{B o_{1} \sin \alpha} \frac{\partial \gamma^{*}}{\partial x^{*}} h^{*} \tag{14} \end{equation*}(14)us=12h2+1Bo1sinαγxh
and the nondimensional pressure becomes
p = { p a | cos α | z + tan β B o 1 B coth B , α ( 0 , π 2 ) p a | cos α | z + tan β B o 1 1 , α = π 2 p a | cos α | z + tan β B o 1 B cot B , α ( π 2 , π ) . p = p a | cos α | z + tan β B o 1 B coth B ,      α 0 , π 2 p a | cos α | z + tan β B o 1 1 ,      α = π 2 p a | cos α | z + tan β B o 1 B cot B ,      α π 2 , π . p^(**)={[p_(a)^(**)-|cos alpha|*z^(**)+(tan beta)/(Bo_(1))*B coth B",",alpha in(0,(pi)/(2))],[p_(a)^(**)-|cos alpha|*z^(**)+(tan beta)/(Bo_(1))*1",",alpha=(pi)/(2)],[p_(a)^(**)-|cos alpha|*z^(**)+(tan beta)/(Bo_(1))*B cot B",",alpha in((pi)/(2),pi).]:}p^{*}= \begin{cases}p_{a}^{*}-|\cos \alpha| \cdot z^{*}+\frac{\tan \beta}{B o_{1}} \cdot B \operatorname{coth} B, & \alpha \in\left(0, \frac{\pi}{2}\right) \\ p_{a}^{*}-|\cos \alpha| \cdot z^{*}+\frac{\tan \beta}{B o_{1}} \cdot 1, & \alpha=\frac{\pi}{2} \\ p_{a}^{*}-|\cos \alpha| \cdot z^{*}+\frac{\tan \beta}{B o_{1}} \cdot B \cot B, & \alpha \in\left(\frac{\pi}{2}, \pi\right) .\end{cases}p={pa|cosα|z+tanβBo1BcothB,α(0,π2)pa|cosα|z+tanβBo11,α=π2pa|cosα|z+tanβBo1BcotB,α(π2,π).
The nondimensional version for the volume is given by
(15) Q = 1 3 1 1 ( h ) 3 d y + 1 2 1 B o 1 sin α γ x 1 1 ( h ) 2 d y (15) Q = 1 3 1 1 h 3 d y + 1 2 1 B o 1 sin α γ x 1 1 h 2 d y {:(15)Q^(**)=(1)/(3)int_(-1)^(1)(h^(**))^(3)dy^(**)+(1)/(2)(1)/(Bo_(1)sin alpha)(delgamma^(**))/(delx^(**))int_(-1)^(1)(h^(**))^(2)dy^(**):}\begin{equation*} Q^{*}=\frac{1}{3} \int_{-1}^{1}\left(h^{*}\right)^{3} d y^{*}+\frac{1}{2} \frac{1}{B o_{1} \sin \alpha} \frac{\partial \gamma^{*}}{\partial x^{*}} \int_{-1}^{1}\left(h^{*}\right)^{2} d y^{*} \tag{15} \end{equation*}(15)Q=1311(h)3dy+121Bo1sinαγx11(h)2dy

3. ASYMPTOTIC ANALYSIS

A) The limit a 0 ( B 0 ) a 0 ( B 0 ) a rarr0(B rarr0)a \rightarrow 0(B \rightarrow 0)a0(B0)
We note that for all α ( 0 , π / 2 ) ( π / 2 , π ) α ( 0 , π / 2 ) ( π / 2 , π ) alpha in(0,pi//2)uu(pi//2,pi)\alpha \in(0, \pi / 2) \cup(\pi / 2, \pi)α(0,π/2)(π/2,π),
h 1 2 a ( 1 ξ 2 ) tan β , h m 1 2 a tan β , and Q ¯ 12 B 4 35 + γ x 1 tan β | tan α | ρ g | cos α | γ ¯ 6 5 B 2 , as B 0 h 1 2 a 1 ξ 2 tan β , h m 1 2 a tan β ,  and  Q ¯ 12 B 4 35 + γ x 1 tan β | tan α | ρ g | cos α | γ ¯ 6 5 B 2 ,  as  B 0 {:[h∼(1)/(2)a*(1-xi^(2))*tan beta","],[h_(m)∼(1)/(2)a*tan beta","" and "],[ bar(Q)∼(12B^(4))/(35)+(delgamma^(**))/(delx^(**))(1)/(tan beta*|tan alpha|)(rho*g|cos alpha|)/(( bar(gamma)))(6)/(5)B^(2)","" as "B rarr0]:}\begin{aligned} h & \sim \frac{1}{2} a \cdot\left(1-\xi^{2}\right) \cdot \tan \beta, \\ h_{m} & \sim \frac{1}{2} a \cdot \tan \beta, \text { and } \\ \bar{Q} & \sim \frac{12 B^{4}}{35}+\frac{\partial \gamma^{*}}{\partial x^{*}} \frac{1}{\tan \beta \cdot|\tan \alpha|} \frac{\rho \cdot g|\cos \alpha|}{\bar{\gamma}} \frac{6}{5} B^{2}, \text { as } B \rightarrow 0 \end{aligned}h12a(1ξ2)tanβ,hm12atanβ, and Q¯12B435+γx1tanβ|tanα|ρg|cosα|γ¯65B2, as B0
B). The limit β 0 β 0 beta rarr0\beta \rightarrow 0β0
We have respectively
h β ( γ ¯ ρ g | cos α | ) 1 / 2 cosh B cosh B ξ sinh B , for α ( 0 , π 2 ) , h β ( γ ¯ ρ g | cos α | ) 1 / 2 1 2 B ( 1 ξ 2 ) , for α = π 2 h β ( γ ¯ ρ g | cos α | ) 1 / 2 cos B ξ cos B sin B , for α ( π 2 , π ) , h m β ( γ ¯ ρ g | cos α | ) 1 / 2 { tanh 1 2 B , α ( 0 , π 2 ) 1 2 B , α = π 2 tan 1 2 B , α ( π 2 , π ) h β γ ¯ ρ g | cos α | 1 / 2 cosh B cosh B ξ sinh B ,  for  α 0 , π 2 , h β γ ¯ ρ g | cos α | 1 / 2 1 2 B 1 ξ 2 ,  for  α = π 2 h β γ ¯ ρ g | cos α | 1 / 2 cos B ξ cos B sin B ,  for  α π 2 , π , h m β γ ¯ ρ g | cos α | 1 / 2 tanh 1 2 B , α 0 , π 2 1 2 B , α = π 2 tan 1 2 B , α π 2 , π {:[h∼beta*((( bar(gamma)))/(rho*g*|cos alpha|))^(1//2)(cosh B-cosh B xi)/(sinh B)","" for "alpha in(0,(pi)/(2))","],[h∼beta*((( bar(gamma)))/(rho*g*|cos alpha|))^(1//2)*(1)/(2)B*(1-xi^(2))","" for "alpha=(pi)/(2)],[h∼beta*((( bar(gamma)))/(rho*g*|cos alpha|))^(1//2)*(cos B xi-cos B)/(sin B)","" for "alpha in((pi)/(2),pi)","],[h_(m)∼beta*((( bar(gamma)))/(rho*g*|cos alpha|))^(1//2)*{[tanh((1)/(2)B)",",alpha in(0,(pi)/(2))],[(1)/(2)B",",alpha=(pi)/(2)],[tan((1)/(2)B)",",alpha in((pi)/(2),pi)]:}]:}\begin{aligned} h & \sim \beta \cdot\left(\frac{\bar{\gamma}}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2} \frac{\cosh B-\cosh B \xi}{\sinh B}, \text { for } \alpha \in\left(0, \frac{\pi}{2}\right), \\ h & \sim \beta \cdot\left(\frac{\bar{\gamma}}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2} \cdot \frac{1}{2} B \cdot\left(1-\xi^{2}\right), \text { for } \alpha=\frac{\pi}{2} \\ h & \sim \beta \cdot\left(\frac{\bar{\gamma}}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2} \cdot \frac{\cos B \xi-\cos B}{\sin B}, \text { for } \alpha \in\left(\frac{\pi}{2}, \pi\right), \\ h_{m} & \sim \beta \cdot\left(\frac{\bar{\gamma}}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2} \cdot \begin{cases}\tanh \frac{1}{2} B, & \alpha \in\left(0, \frac{\pi}{2}\right) \\ \frac{1}{2} B, & \alpha=\frac{\pi}{2} \\ \tan \frac{1}{2} B, & \alpha \in\left(\frac{\pi}{2}, \pi\right)\end{cases} \end{aligned}hβ(γ¯ρg|cosα|)1/2coshBcoshBξsinhB, for α(0,π2),hβ(γ¯ρg|cosα|)1/212B(1ξ2), for α=π2hβ(γ¯ρg|cosα|)1/2cosBξcosBsinB, for α(π2,π),hmβ(γ¯ρg|cosα|)1/2{tanh12B,α(0,π2)12B,α=π2tan12B,α(π2,π)
and
Q ¯ ( 15 B coth 3 B 15 coth 2 B 9 B coth B + 4 ) + 9 2 γ x 1 β | tan α | B 1 ( 3 B coth 2 B 3 coth B B ) for α ( 0 , π 2 ) as β 0 Q ¯ ( 15 B coth 3 B 15 coth 2 B 9 B coth B + 4 + 9 2 γ x 1 β | tan α | B 1 3 B coth 2 B 3 coth B B  for  α 0 , π 2  as  β 0 {:[ bar(Q)∼({: 15 Bcoth^(3)B-15coth^(2)B-9B coth B+4)+(9)/(2)(delgamma^(**))/(delx^(**))(1)/(beta*|tan alpha|)],[*B^(-1)(3Bcoth^(2)B-3coth B-B)" for "alpha in(0,(pi)/(2))" as "beta rarr0]:}\begin{aligned} \bar{Q} \sim( & \left.15 B \operatorname{coth}^{3} B-15 \operatorname{coth}^{2} B-9 B \operatorname{coth} B+4\right)+\frac{9}{2} \frac{\partial \gamma^{*}}{\partial x^{*}} \frac{1}{\beta \cdot|\tan \alpha|} \\ \cdot & B^{-1}\left(3 B \operatorname{coth}^{2} B-3 \operatorname{coth} B-B\right) \text { for } \alpha \in\left(0, \frac{\pi}{2}\right) \text { as } \beta \rightarrow 0 \end{aligned}Q¯(15Bcoth3B15coth2B9BcothB+4)+92γx1β|tanα|B1(3Bcoth2B3cothBB) for α(0,π2) as β0

C). The limit B π B π B rarrpi^(-)B \rightarrow \pi^{-}Bπ

In case iii) we have
a π ( γ ρ g | cos α | ) 1 / 2 , h tan β ( γ ¯ ρ g | cos α | ) 1 / 2 cos B ξ + 1 π B , h m tan β ( γ ¯ ρ g | cos α | ) 1 / 2 2 π B and Q ¯ 15 π ( π B ) 3 + γ x 1 tan β tan α 27 π B 1 , as B π a π γ ρ g | cos α | 1 / 2 , h tan β γ ¯ ρ g | cos α | 1 / 2 cos B ξ + 1 π B , h m tan β γ ¯ ρ g | cos α | 1 / 2 2 π B  and  Q ¯ 15 π ( π B ) 3 + γ x 1 tan β tan α 27 π B 1 ,  as  B π {:[a∼pi*((gamma)/(rho*g*|cos alpha|))^(1//2)","],[h∼tan beta*((( bar(gamma)))/(rho*g*|cos alpha|))^(1//2)*(cos B xi+1)/(pi-B)","],[h_(m)∼tan beta*((( bar(gamma)))/(rho*g*|cos alpha|))^(1//2)*(2)/(pi-B)" and "],[ bar(Q)∼15 pi*(pi-B)^(-3)+(delgamma^(**))/(delx^(**))(1)/(tan beta*tan alpha)27 pi*B^(-1)","" as "B rarrpi^(-)]:}\begin{aligned} a & \sim \pi \cdot\left(\frac{\gamma}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2}, \\ h & \sim \tan \beta \cdot\left(\frac{\bar{\gamma}}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2} \cdot \frac{\cos B \xi+1}{\pi-B}, \\ h_{m} & \sim \tan \beta \cdot\left(\frac{\bar{\gamma}}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2} \cdot \frac{2}{\pi-B} \text { and } \\ \bar{Q} & \sim 15 \pi \cdot(\pi-B)^{-3}+\frac{\partial \gamma^{*}}{\partial x^{*}} \frac{1}{\tan \beta \cdot \tan \alpha} 27 \pi \cdot B^{-1}, \text { as } B \rightarrow \pi^{-} \end{aligned}aπ(γρg|cosα|)1/2,htanβ(γ¯ρg|cosα|)1/2cosBξ+1πB,hmtanβ(γ¯ρg|cosα|)1/22πB and Q¯15π(πB)3+γx1tanβtanα27πB1, as Bπ
D). The limit B ( α 0 + ) B α 0 + B rarr oo(alpha rarr0^(+))B \rightarrow \infty\left(\alpha \rightarrow 0^{+}\right)B(α0+)
In case i) we have
h tan β ( γ ¯ ρ g | cos α | ) 1 / 2 h m tan β ( γ ¯ ρ g | cos α | ) 1 / 2 and Q ¯ 6 B + 9 tan β | tan α | γ x h tan β γ ¯ ρ g | cos α | 1 / 2 h m tan β γ ¯ ρ g | cos α | 1 / 2  and  Q ¯ 6 B + 9 tan β | tan α | γ x {:[h∼tan beta*((( bar(gamma)))/(rho*g*|cos alpha|))^(1//2)],[h_(m)∼tan beta*((( bar(gamma)))/(rho*g*|cos alpha|))^(1//2)" and "],[ bar(Q)∼6B+(9)/(tan beta*|tan alpha|)(delgamma^(**))/(delx^(**))]:}\begin{aligned} h & \sim \tan \beta \cdot\left(\frac{\bar{\gamma}}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2} \\ h_{m} & \sim \tan \beta \cdot\left(\frac{\bar{\gamma}}{\rho \cdot g \cdot|\cos \alpha|}\right)^{1 / 2} \text { and } \\ \bar{Q} & \sim 6 B+\frac{9}{\tan \beta \cdot|\tan \alpha|} \frac{\partial \gamma^{*}}{\partial x^{*}} \end{aligned}htanβ(γ¯ρg|cosα|)1/2hmtanβ(γ¯ρg|cosα|)1/2 and Q¯6B+9tanβ|tanα|γx

CONCLUSIONS

We have to remark at the end of this paper that, when we take into account surface tension gradients which compete with gravity, they give rise to some specific terms in the expressions of velocity (6) or (13), free surface velocity (7) or (14) and the volume flux of the fluid (12) or (15)
They are respectively 1 μ γ x z , 1 μ γ x h , 1 2 μ γ x a a h 2 ( y ) d y 1 μ γ x z , 1 μ γ x h , 1 2 μ γ x a a h 2 ( y ) d y (1)/(mu)(del gamma)/(del x)*z,(1)/(mu)(del gamma)/(del x)*h,(1)/(2mu)(del gamma)/(del x)int_(-a)^(a)h^(2)(y)dy\frac{1}{\mu} \frac{\partial \gamma}{\partial x} \cdot z, \frac{1}{\mu} \frac{\partial \gamma}{\partial x} \cdot h, \frac{1}{2 \mu} \frac{\partial \gamma}{\partial x} \int_{-a}^{a} h^{2}(y) d y1μγxz,1μγxh,12μγxaah2(y)dy and they have the same sign as γ x γ x (del gamma)/(del x)\frac{\partial \gamma}{\partial x}γx. This fact is very plausible from physical point of view.
We have also to observe that the extra term in the expression of Q Q QQQ persist in all asymptotic expansions.

REFERENCES

[1] Achenson, D. J., Elementary Fluid Dynamics, Oxford University Press, Oxford, United Kingdom, pp. 238-259, 1990.
[2] Allen, R. F. and Biggin, C. M., Longitudinal flow of a lenticular liquid filament down an inclined plane, Phys. Fluids, 17, pp. 287-291, 1974.
[3] Amick, C. J., Properties of steady Navier-Stokes solutions for certain unbounded channels and pipes, Nonlinear Anal., 2, pp. 689-720, 1978.
[4] Amick, C. J. and Fraenkel, L. E., Steady Solutions of the Navier-Stokes Equations Representing Plane Flow in Channels of Various Types, Acta Math., 144, pp. 83-152, 1980.
[5] Aris, R., Vector, Tensors and the Basic Equations of Fluid Mechanics, Englewood Cliffs, New Jersey, 1962.
[6] Chifu, E., Gheorghiu, C. I. and Stan, I., Surface mobility of surfactant solutions XI. Numerical analysis for the Marangoni and gravity flow in a thin liquid layer of triangular section, Rev. Roumaine Chim., 29 no. 1, pp. 31-42, 1984.
[7] Duffy, B. R. and Moffatt, H. K., Flow of a viscous trickle on a slowly varying, The Chemical Engineering Journal, 60, pp. 141-146, 1995.
[8] Georgescu, A., Asymptotic Analysis, Ed. Tehnicǎ, Bucharest, 1989.
[9] Gheorghiu, C. I., An unified treatment of boundary layer and lubrication approximations in viscous fluid mechanics, Rev. Anal. Numer. Theor. Approx., to appear. ㅈ
[10] Levich, V. G., Physico-Chemical Hydrodynamics, Englewood Cliffs, New Jersey, 1967.
[11] Ockendon, H. and Ockendon, J. R., Viscous Flow, Cambridge, University Press, 1995.
[12] Sorensen, T. S., Hennenberg, M., Steinchen-Sanfeld, A. and Sanfeld, A., Surface chemical and hydrodynamic stability, Progr. Colloid and Polymer Sci., 61, pp. 6470, 1976.
[13] Towell, G. D. and Rothfeld, L. B., Hydrodynamics of rivulet flow, AICHE. J., 12, p. 972, 1966.
[14] Wagner, A., Instationary Marangoni convection, Preprint, SFB 359, Univ. Heidelberg, pp. 94-42, 1994.
[15] Wilson, S. K. and Duffy, B. R., On the gravity-driven draining of a rivulet of viscous fluid down a slowly varying substrate with variation transverse to the direction of flow, Phys. Fluids, 10, pp. 13-22, 1998.
[16] Whitaker, S., Effect of surface active agents on the stability of falling liquid films, I and EC Fundamentals, 3, pp. 132-142, 1964.
Received July 7, 2000.

    • University Oradea, Department of Mathematics, Armatei Române 3-5, 3700 Oradea, Romania.
      ^(†){ }^{\dagger} "Tiberiu Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: ghcalin@ictp-acad.math.ubbcluj.ro.
2001

Related Posts