[1] Banach, S., Wstep to teorii funcji rzeczywistych, Warsawa-Wroclaw, 1951.
2. Cobzas, S., Mustata, C., Nonn Presewing Extension of convex Lipschitz Functions, J.A.T. 34, (1978), 236-244.
3. Cobzas, S., Mustata, C., Selectiots Associated to the Metric Projection (thisjo¡mal, p. 45-52),
4. Cziper, J., Géher, L., Exlension of Functions Satisfying a Lipschitz Condition, Acta Math. Sci. Hungar. 6 (1955), 213-220.
5. Deutsch, F., Linear Seleclions for Metric Projection, J. Functional Anal. 49 (19S2), 269-292.
6. Deutsch, F., A survey of Metric selections, Contemporary Mathematics lg (1983), 49-71.
7. Deutsch, F., Wu Li, Sung-Ho Park, Tietze Extensions and Continuous Selections for Metric projections, J.A.T. 64 (1991), 55-68.
8. Deutsch, F., Wu Li and Sizwe Mabizela” Helly Extensions and Best Approximation, “Parametric Optimization and Related Topics III” (J. Guddat, H. Th. Jongen, B. Kummer and F. Nosiaeka eds.), Approximation and Optimization, vol. 3, Verlag Peter Lang, Frankfurt (1993), 107-120.
9. McShane, E. J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 834-842.
10. Musttata, C., Best Approximation and Unique Extension of Lipschitz Funcitons, J.A.T. l9 (1977), 222-230.
11. Musttata, C., M-ideals in Metric Spaces, Babes-Bolyai Univ., Fac. of Math. and Physics, Research Seminars, Seminar on Math. Anal., Preprint No, 7 (1988), 65-74.
12. Mustata, C., Selections Associated lo the McShane’s Extension Theorem for Lipschitz Functions, Revue d’Analyse Nurnérique et de la Thorie de I’Approximation 21 (1992), 2, 135-145.-145.
13. Musttata, C., On the Selections Associated to the Metric Projection, Revue d’Anályse Numérique et de la Théorie de I’Approximation 23 (1994) 1l, 89-93.
14. Phelps, R. R, Uniqueness of Hahn-Banach Extension and Unique Best Approxintatíon, Trans. Amer. Math. Soc. 95 (1960), 238-255.
15. Singer, I, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
16. Surg-Ho, Park, Quotient Mappings, Helly Exlensions, Hahn-Banach Extensions, Tietze Extensions, Lipschitz Extensions and Best Approximation, J.Korean Math.Soc.2g (1992)2,239-250,
Paper (preprint) in HTML form
1995-Mustata-On the metric projection and the quotient mapping-Jnaat
ON THE METRIC PROJECTION AND THE QUOTIENT MAPPING
COSTICĂ MUSTĂTA
(Cluj-Napoca)
1. INTRODUCTION
For a linear space ZZ and a nonvoid set UU denote by Z^(U)Z^{U} the linear space (with respect to the pointwise operations of addition and multiplication by real scalars) of all applications from UU to ZZ.
Let Y,XY, X be two nonvoid sets such that Y sube XY \subseteq X and let (N_(Y),||*||_(Y))\left(N_{Y},\|\cdot\|_{Y}\right) and (N_(X),||*||_(X))\left(N_{X},\|\cdot\|_{X}\right) be two normed spaces contained in Z^(Y)Z^{\mathrm{Y}} and Z^(X)Z^{X} respectively. Suppose that for every F inN_(X)F \in N_{X} the restriction F|_(Y)\left.F\right|_{Y} of FF to YY belongs to N_(Y)N_{Y}.
DEFINITON 1. We say that the norms ||*||_(Y)\|\cdot\|_{Y} and ||*||_(Y)\|\cdot\|_{Y} are compatible if
for every F inN_(X)F \in N_{X}.
In the following the norms ||*||_(Y)\|\cdot\|_{Y} and ||*||_(X)\|\cdot\|_{X} will be supposed always compatible.
A nonvoid subset KK of a normed space (X,||*||)(X,\|\cdot\|) is called a cone if:
a) u+v in Ku+v \in K, and
b) lambda*u in K\lambda \cdot u \in K,
for all u,v in Ku, v \in K and lambda in R,lambda >= 0\lambda \in R, \lambda \geq 0.
Definition 2. Let K_(Y)K_{Y} and K_(X)K_{X} be two cones in the linear spaces N_(Y)N_{Y} and N_(X)N_{X}, respectively. We say that the cone K_(Y)K_{Y} has the norm preserving extension ((NPE) in short) property with respect to K_(X)K_{X} if F|_(Y)inK_(Y)\left.F\right|_{Y} \in K_{Y}, for every F inK_(X)F \in K_{X} and every f inK_(Y)f \in K_{Y} has a norm perserving exiension F inK_(X)F \in K_{X} (i.e. F|_(Y)=f\left.F\right|_{Y}=f and ||F||_(X)=||f||_(Y)\|F\|_{X}=\|f\|_{Y} ).
If K_(Y)K_{Y} has the (NPE)-property with respect to K_(X)K_{X} let
{:(2)E(f):={F inK_(X):F|_(Y)=f" and "||F||_(X)=||f||_(Y)}:}\begin{equation*}
\mathscr{E}(f):=\left\{F \in K_{X}:\left.F\right|_{Y}=f \text { and }\|F\|_{X}=\|f\|_{Y}\right\} \tag{2}
\end{equation*}
denote the set of all (NPE) extensions of the function f inK_(Y)f \in K_{Y}. Let also
be the annihilator of the set YY in the linear space M_(X)M_{X} (remember that we have supposed Y sube XY \subseteq X ).
Obviously that Y^(_|_)Y^{\perp} is a closed linear sunspace of M_(X)M_{X}.
A linear subspace VV of normed space UU is called proximinal if for every u in Uu \in U there exists v_(0)in Vv_{0} \in V such that
||u-v_(0)||=d(u,V):=i n f{||u-v||:v in V}\left\|u-v_{0}\right\|=d(u, V):=\inf \{\|u-v\|: v \in V\}
The set
P_(V)(u):={v in V:||u-v||=d(u,V)}P_{V}(u):=\{v \in V:\|u-v\|=d(u, V)\}
is called the set of elements of best approximation for uu by elements in VV.
If P_(v)(w)!=O/P_{v}(w) \neq \varnothing for all ww in a subset WW of UU then the subspace VV is called WW-proximinal.
THEOREM 1. If the cone K_(Y)K_{Y} has the (NPE)- property with respect to the cone K_(X)K_{X} then:
(a) The equality
(5)
for all F inK_(X)F \in K_{X}.
Proof. Let F inK_(X)F \in K_{X}. For G inY^(_|_)G \in Y^{\perp} taking into account that the norms ||*||_(Y)\|\cdot\|_{Y} were supposed compatible in the sense of Definition 1 , we have ||F|_(Y)||_(Y)=||F|_(Y)-G|_(Y)||_(Y)=||(F-G)|_(Y)||_(Y) <= ||F-G||_(X)\left\|\left.F\right|_{Y}\right\|_{Y}=\left\|\left.F\right|_{Y}-\left.G\right|_{Y}\right\|_{Y}=\left\|\left.(F-G)\right|_{Y}\right\|_{Y} \leq\|F-G\|_{X}
It follows that
On the other hand, because F-H inY^(_|_)F-H \in Y^{\perp} for H inE(F|_(Y))H \in \mathscr{E}\left(\left.F\right|_{Y}\right), we have
||F|_(Y)||_(Y)=||H||_(X)=||F-(F-H)||X_(X) >= i n f{||F-G||_(X):G inY^(_|_)}=d(F,Y^(_|_))\left\|\left.F\right|_{Y}\right\|_{Y}=\|H\|_{X}=\|F-(F-H)\| X_{X} \geq \inf \left\{\|F-G\|_{X}: G \in Y^{\perp}\right\}=d\left(F, Y^{\perp}\right)
for every H inE(F|_(Y))H \in \mathscr{E}\left(\left.F\right|_{Y}\right), proving formula (5) and inclusion (6).
In order to prove equality (7) suppose that Y^(_|_)subeK_(X)Y^{\perp} \subseteq K_{X} and let GG be an arbitrary element of P_(Y)_|_(F)P_{Y} \perp(F). Since G|_(Y)=0\left.G\right|_{Y}=0 and the norms ||*||_(Y)\|\cdot\|_{Y} and ||*||_(X)\|\cdot\|_{X} are compatible, it follows that (F-G)|_(Y)=F|_(Y)\left.(F-G)\right|_{Y}=\left.F\right|_{Y} and, by (5),
showing that F-GF-G is a (NPE) extension of F|_(Y)\left.F\right|_{Y}. To prove that F-G inE(F|_(Y))F-G \in \mathscr{E}\left(\left.F\right|_{Y}\right) it remains to show that F-G inK_(X)F-G \in K_{X} (see(2)). But G inY^(_|_)G \in Y^{\perp} implies -G inY^(_|_)-G \in Y^{\perp} and, by hypothesis, Y^(_|_)subeK_(X)Y^{\perp} \subseteq K_{X} implying -G inK_(X)-G \in K_{X}, and, since K_(X)K_{X} is acone, F-G=F+(-G)inK_(X)F-G=F+(-G) \in K_{X},
showing that F-G inE(F|_(Y))F-G \in \mathscr{E}\left(\left.F\right|_{Y}\right). This last relation is equivalent to G in F-E(F|_(Y))G \in F-\mathscr{E}\left(\left.F\right|_{Y}\right) for every G inP_(Y^(_|_))G \in P_{Y^{\perp}} (F), i.e. P_(Y^(_|_))(F)sube F-E(F|_(Y))P_{Y^{\perp}}(F) \subseteq F-\mathscr{E}\left(\left.F\right|_{Y}\right), which together with inclusion (6), prove equality (7).
Taking K_(Y)=N_(Y)K_{Y}=N_{Y} and K_(X)=N_(X)K_{X}=N_{X} one obtains:
COROLLARY 1. If N_(Y)N_{Y} has the (NPE)-propety with respect to N_(X)N_{X} then
(a') The subspace Y^(_|_)={G inN_(X):G|_(Y)=0}Y^{\perp}=\left\{G \in N_{X}:\left.G\right|_{Y}=0\right\} is proximal in N_(X)N_{X} and
holds for every F inN_(X)F \in N_{X}.
Proof. It suffices to prove equality (7'). By Theorem 1 it follows that F-E(F|_(Y))subeP_(Y^(_|_))(F)F-\mathscr{E}\left(\left.F\right|_{Y}\right) \subseteq P_{Y^{\perp}}(F). If F inN_(X)F \in N_{X} and G inP_(Y^(_|_))(F)G \in P_{Y^{\perp}}(F) then
Since (F-G)_(Y)=F|_(Y)(F-G)_{Y}=\left.F\right|_{Y} it follows that F-GF-G is a norm preserving extension F|_(Y)\left.F\right|_{Y}. But K_(X)=N_(X)K_{X}=N_{X} implies M_(X)=N_(X)M_{X}=N_{X} so that F-G inM_(X)F-G \in M_{X} showing that F-G inC(F|_(Y))F-G \in \mathscr{C}\left(\left.F\right|_{Y}\right) or equivalently G in F-C(F|_(Y))G \in F-\mathscr{C}\left(\left.F\right|_{Y}\right) for every G inP_(Y_(_|_))(F)G \in P_{Y_{\perp}}(F). This proves the inclusion P_(Y_(_|_))(F)sube F-E(F|_(Y))P_{Y_{\perp}}(F) \subseteq F-\mathscr{E}\left(\left.F\right|_{Y}\right) and equality (7').
EXAMPLES
1^(@)\mathbf{1}^{\circ}. Let X=[a,b]sub RX=[a, b] \subset R and Y={a,b}Y=\{a, b\}. Take N_(X)=C[a,b]N_{X}=C[a, b]-the space of all realvalued continuous on [a,b][a, b] with the sup-norm and N_(Y)=C({a,b})N_{Y}=C(\{a, b\}).
Obviously that K_(Y)K_{Y} has the (NPE)-properly with respect to K_(X)K_{X}. If F inK_(X)F \in K_{X} then F|_(Y)inK_(Y)\left.F\right|_{Y} \in K_{Y} and function H(x)=f(a),x in[a,b]H(x)=f(a), x \in[a, b], is an (NPE) extension of f in C({a,b})f \in C(\{a, b\}).
The space generated by th cone K_(X)K_{X} is
M_(X):=K_(X)-K_(X)={F in C[a,b]:F(a)=F(b)}M_{X}:=K_{X}-K_{X}=\{F \in C[a, b]: F(a)=F(b)\}
and the annihilator space of the set YY in M_(X)M_{X} is
By Theorem 1, the subspace Y^(_|_)Y^{\perp} is K_(X)K_{X}-proximal and d(F,Y^(_|_))=F(a)d\left(F, Y^{\perp}\right)=F(a) and F-phi(F|_(Y))subeP_(Y)_|_(F)F-\mathscr{\phi}\left(\left.F\right|_{Y}\right) \subseteq P_{Y} \perp(F), for each F inK_(X)F \in K_{X}. We have
{:[E(F|_(Y))={H inK_(X):H(a)=H(b)=||H||_(X)}=],[={H inK_(X):H(a)=H(b)" and "|H(x)| <= F(a)," for all "x in[a,b]}]:}\begin{gathered}
\mathscr{E}\left(\left.F\right|_{Y}\right)=\left\{H \in K_{X}: H(a)=H(b)=\|H\|_{X}\right\}= \\
=\left\{H \in K_{X}: H(a)=H(b) \text { and }|H(x)| \leq F(a), \text { for all } x \in[a, b]\right\}
\end{gathered}
It follows that Y^(_|_)subK_(X)Y^{\perp} \subset K_{X} and therefore the equality F-E(F|_(Y))=P_(Y)_|_(F)F-\mathscr{E}\left(\left.F\right|_{Y}\right)=P_{Y} \perp(F) for each F inK_(X)F \in K_{X}. 2^(@)2^{\circ}. Let X=[-2,2]sub R,Y={-1,0,1}X=[-2,2] \subset R, Y=\{-1,0,1\} and let N_(X):=Lip_(0)[-2,2]={F:[-2,2]rarr R:FN_{X}:=\operatorname{Lip}_{0}[-2,2]=\{F:[-2,2] \rightarrow R: F is Lipschitz on [-2,2][-2,2] and F(0)=0}F(0)=0\} equipped with the Lipschitz norm
||F||_(X)=s u p{|F(x)-F(y)|//|x-y|:x,y in[-2,2],x!=y}\|F\|_{X}=\sup \{|F(x)-F(y)| /|x-y|: x, y \in[-2,2], x \neq y\}
{:[K_(X):={F inLip_(0)[-2,2]:F" is convex on "[-2,2]}],[K_(X):={f inLip_(0){-1,0,1}:f" is convex on "{-1,0,1}}]:}\begin{gathered}
K_{X}:=\left\{F \in \operatorname{Lip}_{0}[-2,2]: F \text { is convex on }[-2,2]\right\} \\
K_{X}:=\left\{f \in \operatorname{Lip}_{0}\{-1,0,1\}: f \text { is convex on }\{-1,0,1\}\right\}
\end{gathered}
By definition F inLip_(0)[-2,2]F \in \operatorname{Lip}_{0}[-2,2] is in K_(X)K_{X} if
for every x,y in[-2,2]x, y \in[-2,2] and every lambda in[0,1]\lambda \in[0,1] and ff is in K_(Y)K_{Y} if the divided difference [-1,0,1;f][-1,0,1 ; f] is nonnegative.
Obviously that K_(Y)K_{Y} has the (NPE)-property with respect to K_(X)K_{X} : for F inK_(X)F \in K_{X} the restriction F|_(Y)\left.F\right|_{Y} is in K_(Y)K_{Y} and F(x)=min_(y in{-1,0,1})[f(y)+||f||_(Y)|x-y|],x in[-2,2]F(x)=\min _{y \in\{-1,0,1\}}\left[f(y)+\|f\|_{Y}|x-y|\right], x \in[-2,2] is a (NPE) extension in K_(X)K_{X} of f inK_(Y)f \in K_{Y}.
Let
F(x)={[-x",",x in[-2","0]],[(1)/(2)x",",x in(0","-2]]:}F(x)= \begin{cases}-x, & x \in[-2,0] \\ \frac{1}{2} x, & x \in(0,-2]\end{cases}
and
G(x)={[-x-1",",x in[-2","-1)],[0",",x in[-1","1]],[(1)/(2)x-(1)/(2)",",x in[1,(1)/(2)]]:}G(x)= \begin{cases}-x-1, & x \in[-2,-1) \\ 0, & x \in[-1,1] \\ \frac{1}{2} x-\frac{1}{2}, & x \in\left[1, \frac{1}{2}\right]\end{cases}
It follows that G inY^(_|_)G \in Y^{\perp} (in fact G inK_(X)subeK_(X)-K_(X)G \in K_{X} \subseteq K_{X}-K_{X} ),
F(x)-G(x)={[1",",x in[-2","-1]],[-x",",x in(-1","0]],[(1)/(2)x",",x in(0","1]],[(1)/(2)",",x in(1","2]]:}F(x)-G(x)= \begin{cases}1, & x \in[-2,-1] \\ -x, & x \in(-1,0] \\ \frac{1}{2} x, & x \in(0,1] \\ \frac{1}{2}, & x \in(1,2]\end{cases}
implying that F-GF-G is a (NPE) extension of F|_(Y)\left.F\right|_{Y}. But F-GF-G is not convex function on [-2,2][-2,2] showing that, in general, F-E(F|_(Y))F-\mathscr{E}\left(\left.F\right|_{Y}\right) can be strictly contained in P_(Y^(_|_))(F)P_{Y^{\perp}}(F). Therefore equality (7) is not true without any supplementary hypotheses on the space Y^(_|_)Y^{\perp}. 3^(@)3^{\circ}. Let X,Y,N_(X^('))N_(Y)X, Y, N_{X^{\prime}} N_{Y} be as in Example 2^(@)2^{\circ} and
By Mc Shane's theorem (see [9]), the space N_(Y)N_{Y} has the (NPE)-property with respect to N_(X)N_{X}. By Corollary the subspace Y^(_|_)Y^{\perp} is proximinal in N_(X)N_{X} and every element GG of best approximation of a function F inN_(X)F \in N_{X} by elements in Y^(_|_)Y^{\perp} has the form G=F-HG=F-H for a function H inE(F|_(Y))H \in \mathscr{E}\left(\left.F\right|_{Y}\right) Also d(F,Y^(_|_))=||F|_(Y)||_(Y)d\left(F, Y^{\perp}\right)=\left\|\left.F\right|_{Y}\right\|_{Y} and P_(Y^(_|_))(F)=F-E(F|_(Y))P_{Y^{\perp}}(F)=F-\mathscr{E}\left(\left.F\right|_{Y}\right).
Other examples to which Corollary 1 applies are given by Hahn-Banach extension theorem, by Tietze extension theorem, by Helly extension Theorem (see [7], [8], [12], [16]).
2. THE QUOTIENT MAPPING
Consider the quotient subspace M_(X)//Y^(_|_)M_{X} / Y^{\perp} with respect to its subspace Y^(_|_)Y^{\perp}, defined by
{:(12)Q_(K_(X)):K_(X)rarrK_(X)//Y^(_|_)","quad Q(f)=F+Y^(_|_)","quad F inK_(X)",":}\begin{equation*}
Q_{K_{X}}: K_{X} \rightarrow K_{X} / Y^{\perp}, \quad Q(f)=F+Y^{\perp}, \quad F \in K_{X}, \tag{12}
\end{equation*}
is called the quotient mapping of the cone K_(X)K_{X} onto the cone K_(X)//Y^(_|_)K_{X} / Y^{\perp}. THEOREM 2. If the cone K_(Y)K_{Y} has the (NPE)-property with respect to the cone K_(X)K_{X} then
1^(0).K_(X)subeY^(_|_)+KerP_(Y^(_|_))∣K_(X)={G+H:G inY^(_|_),G in KerP_(Y^(_|_))∣K_(X)}\mathbf{1}^{0} . K_{X} \subseteq Y^{\perp}+\operatorname{Ker} P_{Y^{\perp}} \mid K_{X}=\left\{G+H: G \in Y^{\perp}, G \in \operatorname{Ker} P_{Y^{\perp}} \mid K_{X}\right\}
2^(@)*Q( KerP_(Y^(_|_))|_(K_(X)))=K_(X)//Y^(_|_);2^{\circ} \cdot Q\left(\left.\operatorname{Ker} P_{Y^{\perp}}\right|_{K_{X}}\right)=K_{X} / Y^{\perp} ;
30. F-(Q|_(KerP_(Y^(_|_))||_(X)))^(-1)(F+Y^(_|_))subeP_(Y^(_|_))|_(K_(X))(F)F-\left.\left(\left.Q\right|_{\operatorname{Ker} P_{Y^{\perp}}| |_{X}}\right)^{-1}\left(F+Y^{\perp}\right) \subseteq P_{Y^{\perp}}\right|_{K_{X}}(F), for every F inK_(X)F \in K_{X}.
Proof. 1^(@)1^{\circ}. By Theorem 1. (b), each F inK_(X)F \in K_{X} there has an element of best approximation G inY^(_|_)G \in Y^{\perp} and G=F-HG=F-H for a function H inE(F|_(Y))H \in \mathscr{E}\left(\left.F\right|_{Y}\right). It follows that ||H||_(X)=||F|_(Y)||_(Y)=d(H,Y^(_|_))\|H\|_{X}=\left\|\left.F\right|_{Y}\right\|_{Y}=d\left(H, Y^{\perp}\right) implying H in KerP_(Y^(_|_))|_(K_(X))\left.H \in \operatorname{Ker} P_{Y^{\perp}}\right|_{K_{X}}; and then F=G+Y^(_|_)F=G+Y^{\perp}, H in KerP_(Y^(_|_))∣K_(X)H \in \operatorname{Ker} P_{Y^{\perp}} \mid K_{X}. 2^(@)\mathbf{2}^{\boldsymbol{\circ}}. Let F+Y^(_|_)inK_(X)//Y^(_|_)F+Y^{\perp} \in K_{X} / Y^{\perp}. Since F|_(Y)inK_(Y)\left.F\right|_{Y} \in K_{Y} and K_(Y)K_{Y} has the (NPE)-property with respect to K_(X)K_{X} it follows that for every H inE(F|_(Y))sube KerP_(Y^(_|_))|_(K_(X))\left.H \in \mathscr{E}\left(\left.F\right|_{Y}\right) \subseteq \operatorname{Ker} P_{Y^{\perp}}\right|_{K_{X}} we have
because F-H inY^(_|_)F-H \in Y^{\perp}. Therefore Q_(KerP_(Y^(_|_)))|_(K_(X))\left.Q_{\operatorname{Ker} P_{Y^{\perp}}}\right|_{K_{X}} is a surjection. 3^(@)3^{\circ}. By 2^(@)2^{\circ}, the application
Theorem 2 is proved.
Using Theorem 2 one can obtain some relations between the properties of the selections associated to the metric projection P_(Y^(_|_))|_(K_(X))\left.P_{Y^{\perp}}\right|_{K_{X}} and the properties of the selections associated to the application EE defined by (13) and (14). (see [3], [12], [13], [16]).
REFERENCES
3. Cobzaş, S., Mustăţa, C., Selections Associated to the Metric Projection (this journal, p. 45-52),
4. Cziper, J., Géher, L., Extension of Functions Satisfying a Lipschitz Condition, Acta Math. Sci. Hungar. 6 (1955), 213-220.
5. Deutsch, F., Linear Selections for Metric Projection, J. Functional Anal. 49 (1982), 269-292.
6. Deutsch, F., A Survey of Metric Selections, Contemporary Mathematics 18 (1983), 49-71.
7. Deutsch, F., Wu Li, Sung-Ho Park, Tietze Extensions and Continuous Selections for Metric Projections, J.A.T. 64 (1991), 55-68.
8. Deutsch, F., Wu Li and Sizwe Mabizela, Helly Extensions and Best Approximation, "Parametric Optimization and Related Topics III" (J. Guddat, H. Th. Jongen, B. Kummer and F. Nošiæka, eds.), Approximation and Optimization, vol. 3, Verlag Peter Lang, Frankfurt (1993), 107-120.
9. McShane, E. J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 834-842.
10. Mustăta, C., Best Approximation and Unique Extension of Lipschitz Fuctions, J.A.T. 19 (1977) 222-230.
11. Mustăţa, C., M-ideals in Metric Spaces, Babeş-Bolyai Univ., Fac. of Math. and Physics, Research Seminars, Seminar on Math. Anal., preprint No. 7 (1988), 65-74.
12. Mustăta, C., Selections Associated to the McShane's Extension Theorem for Lipschitz Functions, Revue d'Analyse Numérique et de la Théorie de l'Approximation 21 (1992) 2, 135-145.
13. Mustăta, C., On the Selections Associated to the Metric Projection, Revue d'Analyse Numérique et de la Théorie de l’Approximation 23 (1994) 1, 89-93.
14. Phelps, R. R., Uniqueness of Hahn-Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
15. Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
16. Sung-Ho, Park, Quotient Mappings, Helly Extensions, Hahn-Banach Extensions, Tietze Extensions, Lipschitz Extensions and Best Approximation, J. Koreean Math. Soc. 29 (1992) 2, 239-250.
Received 15 IX 1994
Academia Română
Institutul de Calcul
"Tiberiu Popoviciu"
P.O. Box 68
3400 Cluj-Napoca 1
România
Banach, S., Wstep to teorii funkji rzeczywistych, Warsawa-Wroclaw, 1951.