On the metric projection and the quotient mapping

Abstract

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

Paper coordinates

C. Mustăţa, On the metric projection and the quotient mapping, Rev. Anal. Numér. Théor. Approx., 24 (1995) nos. 1-2, 191-199.

PDF

About this paper

Journal

Revue d’Analyse Numer. Theor. Approx.

Publisher Name

Publishing Romanian Academy

Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

[1]  Banach, S., Wstep to teorii funcji rzeczywistych, Warsawa-Wroclaw, 1951.
2. Cobzas, S., Mustata, C., Nonn Presewing Extension of convex Lipschitz Functions, J.A.T. 34, (1978), 236-244.
3. Cobzas, S., Mustata, C., Selectiots Associated to the Metric Projection (thisjo¡mal, p. 45-52),
4. Cziper, J., Géher, L., Exlension of Functions Satisfying a Lipschitz Condition, Acta Math. Sci. Hungar. 6 (1955), 213-220.
5. Deutsch, F., Linear Seleclions for Metric Projection, J. Functional Anal. 49 (19S2), 269-292.
6. Deutsch, F., A survey of Metric selections, Contemporary Mathematics lg (1983), 49-71.
7. Deutsch, F., Wu Li, Sung-Ho Park, Tietze Extensions and Continuous Selections for Metric projections, J.A.T. 64 (1991), 55-68.
8. Deutsch, F., Wu Li and Sizwe Mabizela” Helly Extensions and Best Approximation, “Parametric Optimization and Related Topics III” (J. Guddat, H. Th. Jongen, B. Kummer and F. Nosiaeka eds.), Approximation and Optimization, vol. 3, Verlag Peter Lang, Frankfurt (1993), 107-120.
9. McShane, E. J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 834-842.
10. Musttata, C., Best Approximation and Unique Extension of Lipschitz Funcitons, J.A.T. l9 (1977), 222-230.
11. Musttata, C., M-ideals in Metric Spaces, Babes-Bolyai Univ., Fac. of Math. and Physics, Research Seminars, Seminar on Math. Anal., Preprint No, 7 (1988), 65-74.
12. Mustata, C., Selections Associated lo the McShane’s Extension Theorem for Lipschitz Functions, Revue d’Analyse Nurnérique et de la Thorie de I’Approximation 21 (1992), 2, 135-145.-145.
13. Musttata, C., On the  Selections Associated to the Metric Projection, Revue d’Anályse Numérique et de la Théorie de I’Approximation 23 (1994) 1l,  89-93.
14. Phelps, R. R, Uniqueness of Hahn-Banach Extension and Unique Best Approxintatíon, Trans. Amer. Math. Soc. 95 (1960), 238-255.
15. Singer, I, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
16. Surg-Ho, Park, Quotient Mappings, Helly Exlensions, Hahn-Banach Extensions, Tietze Extensions, Lipschitz Extensions and Best Approximation, J.Korean Math.Soc.2g (1992)2,239-250,

Paper (preprint) in HTML form

1995-Mustata-On the metric projection and the quotient mapping-Jnaat

ON THE METRIC PROJECTION AND THE QUOTIENT MAPPING

COSTICĂ MUSTĂTA

(Cluj-Napoca)

1. INTRODUCTION

For a linear space Z Z ZZZ and a nonvoid set U U UUU denote by Z U Z U Z^(U)Z^{U}ZU the linear space (with respect to the pointwise operations of addition and multiplication by real scalars) of all applications from U U UUU to Z Z ZZZ.
Let Y , X Y , X Y,XY, XY,X be two nonvoid sets such that Y X Y X Y sube XY \subseteq XYX and let ( N Y , Y ) N Y , Y (N_(Y),||*||_(Y))\left(N_{Y},\|\cdot\|_{Y}\right)(NY,Y) and ( N X , X ) N X , X (N_(X),||*||_(X))\left(N_{X},\|\cdot\|_{X}\right)(NX,X) be two normed spaces contained in Z Y Z Y Z^(Y)Z^{\mathrm{Y}}ZY and Z X Z X Z^(X)Z^{X}ZX respectively. Suppose that for every F N X F N X F inN_(X)F \in N_{X}FNX the restriction F | Y F Y F|_(Y)\left.F\right|_{Y}F|Y of F F FFF to Y Y YYY belongs to N Y N Y N_(Y)N_{Y}NY.
DEFINITON 1. We say that the norms Y Y ||*||_(Y)\|\cdot\|_{Y}Y and Y Y ||*||_(Y)\|\cdot\|_{Y}Y are compatible if
(1) F | Y Y F X (1) F Y Y F X {:(1)||F|_(Y)||_(Y) <= ||F||_(X):}\begin{equation*} \left\|\left.F\right|_{Y}\right\|_{Y} \leq\|F\|_{X} \tag{1} \end{equation*}(1)F|YYFX
for every F N X F N X F inN_(X)F \in N_{X}FNX.
In the following the norms Y Y ||*||_(Y)\|\cdot\|_{Y}Y and X X ||*||_(X)\|\cdot\|_{X}X will be supposed always compatible.
A nonvoid subset K K KKK of a normed space ( X , ) ( X , ) (X,||*||)(X,\|\cdot\|)(X,) is called a cone if:
a) u + v K u + v K u+v in Ku+v \in Ku+vK, and
b) λ u K λ u K lambda*u in K\lambda \cdot u \in KλuK,
for all u , v K u , v K u,v in Ku, v \in Ku,vK and λ R , λ 0 λ R , λ 0 lambda in R,lambda >= 0\lambda \in R, \lambda \geq 0λR,λ0.
Definition 2. Let K Y K Y K_(Y)K_{Y}KY and K X K X K_(X)K_{X}KX be two cones in the linear spaces N Y N Y N_(Y)N_{Y}NY and N X N X N_(X)N_{X}NX, respectively. We say that the cone K Y K Y K_(Y)K_{Y}KY has the norm preserving extension ((NPE) in short) property with respect to K X K X K_(X)K_{X}KX if F | Y K Y F Y K Y F|_(Y)inK_(Y)\left.F\right|_{Y} \in K_{Y}F|YKY, for every F K X F K X F inK_(X)F \in K_{X}FKX and every f K Y f K Y f inK_(Y)f \in K_{Y}fKY has a norm perserving exiension F K X F K X F inK_(X)F \in K_{X}FKX (i.e. F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f and F X = f Y F X = f Y ||F||_(X)=||f||_(Y)\|F\|_{X}=\|f\|_{Y}FX=fY ).

If K Y K Y K_(Y)K_{Y}KY has the (NPE)-property with respect to K X K X K_(X)K_{X}KX let

(2) E ( f ) := { F K X : F | Y = f and F X = f Y } (2) E ( f ) := F K X : F Y = f  and  F X = f Y {:(2)E(f):={F inK_(X):F|_(Y)=f" and "||F||_(X)=||f||_(Y)}:}\begin{equation*} \mathscr{E}(f):=\left\{F \in K_{X}:\left.F\right|_{Y}=f \text { and }\|F\|_{X}=\|f\|_{Y}\right\} \tag{2} \end{equation*}(2)E(f):={FKX:F|Y=f and FX=fY}
denote the set of all (NPE) extensions of the function f K Y f K Y f inK_(Y)f \in K_{Y}fKY. Let also
(3) M X := K X K X (3) M X := K X K X {:(3)M_(X):=K_(X)-K_(X):}\begin{equation*} M_{X}:=K_{X}-K_{X} \tag{3} \end{equation*}(3)MX:=KXKX
denote the liniar subspace of N X N X N_(X)N_{X}NX generated by the cone K X K X K_(X)K_{X}KX and let
(4) Y := { G M X : G | Y = 0 } (4) Y := G M X : G Y = 0 {:(4)Y^(_|_):={G inM_(X):G|_(Y)=0}:}\begin{equation*} Y^{\perp}:=\left\{G \in M_{X}:\left.G\right|_{Y}=0\right\} \tag{4} \end{equation*}(4)Y:={GMX:G|Y=0}
be the annihilator of the set Y Y YYY in the linear space M X M X M_(X)M_{X}MX (remember that we have supposed Y X Y X Y sube XY \subseteq XYX ).
Obviously that Y Y Y^(_|_)Y^{\perp}Y is a closed linear sunspace of M X M X M_(X)M_{X}MX.
A linear subspace V V VVV of normed space U U UUU is called proximinal if for every u U u U u in Uu \in UuU there exists v 0 V v 0 V v_(0)in Vv_{0} \in Vv0V such that
u v 0 = d ( u , V ) := inf { u v : v V } u v 0 = d ( u , V ) := inf { u v : v V } ||u-v_(0)||=d(u,V):=i n f{||u-v||:v in V}\left\|u-v_{0}\right\|=d(u, V):=\inf \{\|u-v\|: v \in V\}uv0=d(u,V):=inf{uv:vV}
The set
P V ( u ) := { v V : u v = d ( u , V ) } P V ( u ) := { v V : u v = d ( u , V ) } P_(V)(u):={v in V:||u-v||=d(u,V)}P_{V}(u):=\{v \in V:\|u-v\|=d(u, V)\}PV(u):={vV:uv=d(u,V)}
is called the set of elements of best approximation for u u uuu by elements in V V VVV.
If P v ( w ) P v ( w ) P_(v)(w)!=O/P_{v}(w) \neq \varnothingPv(w) for all w w www in a subset W W WWW of U U UUU then the subspace V V VVV is called W W WWW-proximinal.
THEOREM 1. If the cone K Y K Y K_(Y)K_{Y}KY has the (NPE)- property with respect to the cone K X K X K_(X)K_{X}KX then:
(a) The equality
(5)
d ( F , Y ) = F | Y Y d F , Y = F Y Y d(F,Y^(_|_))=||F|_(Y)||_(Y)d\left(F, Y^{\perp}\right)=\left\|\left.F\right|_{Y}\right\|_{Y}d(F,Y)=F|YY
is true for all F K X F K X F inK_(X)F \in K_{X}FKX.
(b) The inclusion
(6) F E ( F | Y ) P Y ( F ) (6) F E F Y P Y ( F ) {:(6)F-E(F|_(Y))subeP_(Y)_|_(F):}\begin{equation*} F-\mathscr{E}\left(\left.F\right|_{Y}\right) \subseteq P_{Y} \perp(F) \tag{6} \end{equation*}(6)FE(F|Y)PY(F)
holds for every F K X F K X F inK_(X^('))F \in K_{X^{\prime}}FKX
(c) If furthermore Y K X Y K X Y^(_|_)subeK_(X)Y^{\perp} \subseteq K_{X}YKX, then
F C ( F | Y ) = P Y ( F ) F C F Y = P Y ( F ) F-C(F|_(Y))=P_(Y)_|_(F)F-\mathscr{C}\left(\left.F\right|_{Y}\right)=P_{Y} \perp(F)FC(F|Y)=PY(F)
for all F K X F K X F inK_(X)F \in K_{X}FKX.
Proof. Let F K X F K X F inK_(X)F \in K_{X}FKX. For G Y G Y G inY^(_|_)G \in Y^{\perp}GY taking into account that the norms Y Y ||*||_(Y)\|\cdot\|_{Y}Y were supposed compatible in the sense of Definition 1 , we have
F | Y Y = F | Y G | Y Y = ( F G ) | Y Y F G X F Y Y = F Y G Y Y = ( F G ) Y Y F G X ||F|_(Y)||_(Y)=||F|_(Y)-G|_(Y)||_(Y)=||(F-G)|_(Y)||_(Y) <= ||F-G||_(X)\left\|\left.F\right|_{Y}\right\|_{Y}=\left\|\left.F\right|_{Y}-\left.G\right|_{Y}\right\|_{Y}=\left\|\left.(F-G)\right|_{Y}\right\|_{Y} \leq\|F-G\|_{X}F|YY=F|YG|YY=(FG)|YYFGX
It follows that
F | Y Y d ( F , Y ) F Y Y d F , Y ||F|_(Y)||_(Y) <= d(F,Y^(_|_))\left\|\left.F\right|_{Y}\right\|_{Y} \leq d\left(F, Y^{\perp}\right)F|YYd(F,Y)
On the other hand, because F H Y F H Y F-H inY^(_|_)F-H \in Y^{\perp}FHY for H E ( F | Y ) H E F Y H inE(F|_(Y))H \in \mathscr{E}\left(\left.F\right|_{Y}\right)HE(F|Y), we have
F | Y Y = H X = F ( F H ) X X inf { F G X : G Y } = d ( F , Y ) F Y Y = H X = F ( F H ) X X inf F G X : G Y = d F , Y ||F|_(Y)||_(Y)=||H||_(X)=||F-(F-H)||X_(X) >= i n f{||F-G||_(X):G inY^(_|_)}=d(F,Y^(_|_))\left\|\left.F\right|_{Y}\right\|_{Y}=\|H\|_{X}=\|F-(F-H)\| X_{X} \geq \inf \left\{\|F-G\|_{X}: G \in Y^{\perp}\right\}=d\left(F, Y^{\perp}\right)F|YY=HX=F(FH)XXinf{FGX:GY}=d(F,Y)
Combining the obtained inequalities one can write
d ( F , Y ) F ( F H ) X X = F | Y Y d ( F , Y ) d F , Y F ( F H ) X X = F Y Y d F , Y d(F,Y^(_|_)) <= ||F-(F-H)||X_(X)=||F|_(Y)||_(Y) <= d(F,Y^(_|_))d\left(F, Y^{\perp}\right) \leq\|F-(F-H)\| X_{X}=\left\|\left.F\right|_{Y}\right\|_{Y} \leq d\left(F, Y^{\perp}\right)d(F,Y)F(FH)XX=F|YYd(F,Y)
It follows
F ( F H ) X = d ( F , Y ) = F | Y , F ( F H ) X = d F , Y = F Y , ||F-(F-H)||_(X)=d(F,Y^(_|_))=||F|_(Y)||,\|F-(F-H)\|_{X}=d\left(F, Y^{\perp}\right)=\left\|\left.F\right|_{Y}\right\|,F(FH)X=d(F,Y)=F|Y,
for every H E ( F | Y ) H E F Y H inE(F|_(Y))H \in \mathscr{E}\left(\left.F\right|_{Y}\right)HE(F|Y), proving formula (5) and inclusion (6).
In order to prove equality (7) suppose that Y K X Y K X Y^(_|_)subeK_(X)Y^{\perp} \subseteq K_{X}YKX and let G G GGG be an arbitrary element of P Y ( F ) P Y ( F ) P_(Y)_|_(F)P_{Y} \perp(F)PY(F). Since G | Y = 0 G Y = 0 G|_(Y)=0\left.G\right|_{Y}=0G|Y=0 and the norms Y Y ||*||_(Y)\|\cdot\|_{Y}Y and X X ||*||_(X)\|\cdot\|_{X}X are compatible, it follows that ( F G ) | Y = F | Y ( F G ) Y = F Y (F-G)|_(Y)=F|_(Y)\left.(F-G)\right|_{Y}=\left.F\right|_{Y}(FG)|Y=F|Y and, by (5),
F G X = d ( F , Y ) = F | Y Y F G X = d F , Y = F Y Y ||F-G||_(X)=d(F,Y^(_|_))=||F|_(Y)||_(Y)\|F-G\|_{X}=d\left(F, Y^{\perp}\right)=\left\|\left.F\right|_{Y}\right\|_{Y}FGX=d(F,Y)=F|YY
showing that F G F G F-GF-GFG is a (NPE) extension of F | Y F Y F|_(Y)\left.F\right|_{Y}F|Y. To prove that F G E ( F | Y ) F G E F Y F-G inE(F|_(Y))F-G \in \mathscr{E}\left(\left.F\right|_{Y}\right)FGE(F|Y) it remains to show that F G K X F G K X F-G inK_(X)F-G \in K_{X}FGKX (see(2)). But G Y G Y G inY^(_|_)G \in Y^{\perp}GY implies G Y G Y -G inY^(_|_)-G \in Y^{\perp}GY and, by hypothesis, Y K X Y K X Y^(_|_)subeK_(X)Y^{\perp} \subseteq K_{X}YKX implying G K X G K X -G inK_(X)-G \in K_{X}GKX, and, since K X K X K_(X)K_{X}KX is acone, F G = F + ( G ) K X F G = F + ( G ) K X F-G=F+(-G)inK_(X)F-G=F+(-G) \in K_{X}FG=F+(G)KX,
showing that F G E ( F | Y ) F G E F Y F-G inE(F|_(Y))F-G \in \mathscr{E}\left(\left.F\right|_{Y}\right)FGE(F|Y). This last relation is equivalent to G F E ( F | Y ) G F E F Y G in F-E(F|_(Y))G \in F-\mathscr{E}\left(\left.F\right|_{Y}\right)GFE(F|Y) for every G P Y G P Y G inP_(Y^(_|_))G \in P_{Y^{\perp}}GPY (F), i.e. P Y ( F ) F E ( F | Y ) P Y ( F ) F E F Y P_(Y^(_|_))(F)sube F-E(F|_(Y))P_{Y^{\perp}}(F) \subseteq F-\mathscr{E}\left(\left.F\right|_{Y}\right)PY(F)FE(F|Y), which together with inclusion (6), prove equality (7).
Taking K Y = N Y K Y = N Y K_(Y)=N_(Y)K_{Y}=N_{Y}KY=NY and K X = N X K X = N X K_(X)=N_(X)K_{X}=N_{X}KX=NX one obtains:
COROLLARY 1. If N Y N Y N_(Y)N_{Y}NY has the (NPE)-propety with respect to N X N X N_(X)N_{X}NX then
(a') The subspace Y = { G N X : G | Y = 0 } Y = G N X : G Y = 0 Y^(_|_)={G inN_(X):G|_(Y)=0}Y^{\perp}=\left\{G \in N_{X}:\left.G\right|_{Y}=0\right\}Y={GNX:G|Y=0} is proximal in N X N X N_(X)N_{X}NX and
( ) d ( F , Y ) = F | Y Y ( ) d F , Y = F Y Y {:('")"d(F,Y^(_|_))=||F|_(Y)||_(Y):}\begin{equation*} d\left(F, Y^{\perp}\right)=\left\|\left.F\right|_{Y}\right\|_{Y} \tag{$\prime$} \end{equation*}()d(F,Y)=F|YY
for every F N X F N X F inN_(X)F \in N_{X}FNX.
(b') The equality
(7')
P Y ( F ) = F E ( F | Y ) P Y ( F ) = F E F Y P_(Y^(_|_))(F)=F-E(F|_(Y))P_{Y^{\perp}}(F)=F-\mathscr{E}\left(\left.F\right|_{Y}\right)PY(F)=FE(F|Y)
holds for every F N X F N X F inN_(X)F \in N_{X}FNX.
Proof. It suffices to prove equality (7'). By Theorem 1 it follows that F E ( F | Y ) P Y ( F ) F E F Y P Y ( F ) F-E(F|_(Y))subeP_(Y^(_|_))(F)F-\mathscr{E}\left(\left.F\right|_{Y}\right) \subseteq P_{Y^{\perp}}(F)FE(F|Y)PY(F). If F N X F N X F inN_(X)F \in N_{X}FNX and G P Y ( F ) G P Y ( F ) G inP_(Y^(_|_))(F)G \in P_{Y^{\perp}}(F)GPY(F) then
F G X = d ( F , Y ) = F | Y Y F G X = d F , Y = F Y Y ||F-G||_(X)=d(F,Y^(_|_))=||F|_(Y)||_(Y)\|F-G\|_{X}=d\left(F, Y^{\perp}\right)=\left\|\left.F\right|_{Y}\right\|_{Y}FGX=d(F,Y)=F|YY
Since ( F G ) Y = F | Y ( F G ) Y = F Y (F-G)_(Y)=F|_(Y)(F-G)_{Y}=\left.F\right|_{Y}(FG)Y=F|Y it follows that F G F G F-GF-GFG is a norm preserving extension F | Y F Y F|_(Y)\left.F\right|_{Y}F|Y. But K X = N X K X = N X K_(X)=N_(X)K_{X}=N_{X}KX=NX implies M X = N X M X = N X M_(X)=N_(X)M_{X}=N_{X}MX=NX so that F G M X F G M X F-G inM_(X)F-G \in M_{X}FGMX showing that F G C ( F | Y ) F G C F Y F-G inC(F|_(Y))F-G \in \mathscr{C}\left(\left.F\right|_{Y}\right)FGC(F|Y) or equivalently G F C ( F | Y ) G F C F Y G in F-C(F|_(Y))G \in F-\mathscr{C}\left(\left.F\right|_{Y}\right)GFC(F|Y) for every G P Y ( F ) G P Y ( F ) G inP_(Y_(_|_))(F)G \in P_{Y_{\perp}}(F)GPY(F). This proves the inclusion P Y ( F ) F E ( F | Y ) P Y ( F ) F E F Y P_(Y_(_|_))(F)sube F-E(F|_(Y))P_{Y_{\perp}}(F) \subseteq F-\mathscr{E}\left(\left.F\right|_{Y}\right)PY(F)FE(F|Y) and equality (7').

EXAMPLES

1 1 1^(@)\mathbf{1}^{\circ}1. Let X = [ a , b ] R X = [ a , b ] R X=[a,b]sub RX=[a, b] \subset RX=[a,b]R and Y = { a , b } Y = { a , b } Y={a,b}Y=\{a, b\}Y={a,b}. Take N X = C [ a , b ] N X = C [ a , b ] N_(X)=C[a,b]N_{X}=C[a, b]NX=C[a,b]-the space of all realvalued continuous on [ a , b ] [ a , b ] [a,b][a, b][a,b] with the sup-norm and N Y = C ( { a , b } ) N Y = C ( { a , b } ) N_(Y)=C({a,b})N_{Y}=C(\{a, b\})NY=C({a,b}).
Let K X K X K_(X)K_{X}KX be the cone
K X := { F C [ a , b ] : F ( a ) = F ( b ) 0 } K X := { F C [ a , b ] : F ( a ) = F ( b ) 0 } K_(X):={F in C[a,b]:F(a)=F(b) >= 0}K_{X}:=\{F \in C[a, b]: F(a)=F(b) \geq 0\}KX:={FC[a,b]:F(a)=F(b)0}
and K Y = K X C ( { a , b } ) K Y = K X C ( { a , b } ) K_(Y)=K_(X)nn C({a,b})K_{Y}=K_{X} \cap C(\{a, b\})KY=KXC({a,b}), i.e.
K Y := { f C ( { a , b } ) : f ( a ) = f ( b ) 0 } K Y := { f C ( { a , b } ) : f ( a ) = f ( b ) 0 } K_(Y):={f in C({a,b}):f(a)=f(b) >= 0}K_{Y}:=\{f \in C(\{a, b\}): f(a)=f(b) \geq 0\}KY:={fC({a,b}):f(a)=f(b)0}
Obviously that K Y K Y K_(Y)K_{Y}KY has the (NPE)-properly with respect to K X K X K_(X)K_{X}KX. If F K X F K X F inK_(X)F \in K_{X}FKX then F | Y K Y F Y K Y F|_(Y)inK_(Y)\left.F\right|_{Y} \in K_{Y}F|YKY and function H ( x ) = f ( a ) , x [ a , b ] H ( x ) = f ( a ) , x [ a , b ] H(x)=f(a),x in[a,b]H(x)=f(a), x \in[a, b]H(x)=f(a),x[a,b], is an (NPE) extension of f C ( { a , b } ) f C ( { a , b } ) f in C({a,b})f \in C(\{a, b\})fC({a,b}).
The space generated by th cone K X K X K_(X)K_{X}KX is
M X := K X K X = { F C [ a , b ] : F ( a ) = F ( b ) } M X := K X K X = { F C [ a , b ] : F ( a ) = F ( b ) } M_(X):=K_(X)-K_(X)={F in C[a,b]:F(a)=F(b)}M_{X}:=K_{X}-K_{X}=\{F \in C[a, b]: F(a)=F(b)\}MX:=KXKX={FC[a,b]:F(a)=F(b)}
and the annihilator space of the set Y Y YYY in M X M X M_(X)M_{X}MX is
Y := { G M X : G ( a ) = G ( b ) = 0 } Y := G M X : G ( a ) = G ( b ) = 0 Y^(_|_):={G inM_(X):G(a)=G(b)=0}Y^{\perp}:=\left\{G \in M_{X}: G(a)=G(b)=0\right\}Y:={GMX:G(a)=G(b)=0}
By Theorem 1, the subspace Y Y Y^(_|_)Y^{\perp}Y is K X K X K_(X)K_{X}KX-proximal and d ( F , Y ) = F ( a ) d F , Y = F ( a ) d(F,Y^(_|_))=F(a)d\left(F, Y^{\perp}\right)=F(a)d(F,Y)=F(a) and F ϕ ( F | Y ) P Y ( F ) F ϕ F Y P Y ( F ) F-phi(F|_(Y))subeP_(Y)_|_(F)F-\mathscr{\phi}\left(\left.F\right|_{Y}\right) \subseteq P_{Y} \perp(F)Fϕ(F|Y)PY(F), for each F K X F K X F inK_(X)F \in K_{X}FKX. We have
E ( F | Y ) = { H K X : H ( a ) = H ( b ) = H X } = = { H K X : H ( a ) = H ( b ) and | H ( x ) | F ( a ) , for all x [ a , b ] } E F Y = H K X : H ( a ) = H ( b ) = H X = = H K X : H ( a ) = H ( b )  and  | H ( x ) | F ( a ) ,  for all  x [ a , b ] {:[E(F|_(Y))={H inK_(X):H(a)=H(b)=||H||_(X)}=],[={H inK_(X):H(a)=H(b)" and "|H(x)| <= F(a)," for all "x in[a,b]}]:}\begin{gathered} \mathscr{E}\left(\left.F\right|_{Y}\right)=\left\{H \in K_{X}: H(a)=H(b)=\|H\|_{X}\right\}= \\ =\left\{H \in K_{X}: H(a)=H(b) \text { and }|H(x)| \leq F(a), \text { for all } x \in[a, b]\right\} \end{gathered}E(F|Y)={HKX:H(a)=H(b)=HX}=={HKX:H(a)=H(b) and |H(x)|F(a), for all x[a,b]}
It follows that Y K X Y K X Y^(_|_)subK_(X)Y^{\perp} \subset K_{X}YKX and therefore the equality F E ( F | Y ) = P Y ( F ) F E F Y = P Y ( F ) F-E(F|_(Y))=P_(Y)_|_(F)F-\mathscr{E}\left(\left.F\right|_{Y}\right)=P_{Y} \perp(F)FE(F|Y)=PY(F) for each F K X F K X F inK_(X)F \in K_{X}FKX.
2 2 2^(@)2^{\circ}2. Let X = [ 2 , 2 ] R , Y = { 1 , 0 , 1 } X = [ 2 , 2 ] R , Y = { 1 , 0 , 1 } X=[-2,2]sub R,Y={-1,0,1}X=[-2,2] \subset R, Y=\{-1,0,1\}X=[2,2]R,Y={1,0,1} and let N X := Lip 0 [ 2 , 2 ] = { F : [ 2 , 2 ] R : F N X := Lip 0 [ 2 , 2 ] = { F : [ 2 , 2 ] R : F N_(X):=Lip_(0)[-2,2]={F:[-2,2]rarr R:FN_{X}:=\operatorname{Lip}_{0}[-2,2]=\{F:[-2,2] \rightarrow R: FNX:=Lip0[2,2]={F:[2,2]R:F is Lipschitz on [ 2 , 2 ] [ 2 , 2 ] [-2,2][-2,2][2,2] and F ( 0 ) = 0 } F ( 0 ) = 0 } F(0)=0}F(0)=0\}F(0)=0} equipped with the Lipschitz norm
F X = sup { | F ( x ) F ( y ) | / | x y | : x , y [ 2 , 2 ] , x y } F X = sup { | F ( x ) F ( y ) | / | x y | : x , y [ 2 , 2 ] , x y } ||F||_(X)=s u p{|F(x)-F(y)|//|x-y|:x,y in[-2,2],x!=y}\|F\|_{X}=\sup \{|F(x)-F(y)| /|x-y|: x, y \in[-2,2], x \neq y\}FX=sup{|F(x)F(y)|/|xy|:x,y[2,2],xy}
For N Y N Y N_(Y)N_{Y}NY take
N Y := Lip 0 { 1 , 0 , 1 } = { f : { 1 , 0 , 1 } R : f ( 0 ) = 0 } N Y := Lip 0 { 1 , 0 , 1 } = { f : { 1 , 0 , 1 } R : f ( 0 ) = 0 } N_(Y):=Lip_(0){-1,0,1}={f:{-1,0,1}rarr R:f(0)=0}N_{Y}:=\operatorname{Lip}_{0}\{-1,0,1\}=\{f:\{-1,0,1\} \rightarrow R: f(0)=0\}NY:=Lip0{1,0,1}={f:{1,0,1}R:f(0)=0}
equipped with the norm
f Y = max { | f ( 1 ) | , | f ( 1 ) | } . f Y = max { | f ( 1 ) | , | f ( 1 ) | } . ||f||_(Y)=max{|f(-1)|,|f(1)|}.\|f\|_{Y}=\max \{|f(-1)|,|f(1)|\} .fY=max{|f(1)|,|f(1)|}.
For K X K X K_(X)K_{X}KX and K Y K Y K_(Y)K_{Y}KY take
K X := { F Lip 0 [ 2 , 2 ] : F is convex on [ 2 , 2 ] } K X := { f Lip 0 { 1 , 0 , 1 } : f is convex on { 1 , 0 , 1 } } K X := F Lip 0 [ 2 , 2 ] : F  is convex on  [ 2 , 2 ] K X := f Lip 0 { 1 , 0 , 1 } : f  is convex on  { 1 , 0 , 1 } {:[K_(X):={F inLip_(0)[-2,2]:F" is convex on "[-2,2]}],[K_(X):={f inLip_(0){-1,0,1}:f" is convex on "{-1,0,1}}]:}\begin{gathered} K_{X}:=\left\{F \in \operatorname{Lip}_{0}[-2,2]: F \text { is convex on }[-2,2]\right\} \\ K_{X}:=\left\{f \in \operatorname{Lip}_{0}\{-1,0,1\}: f \text { is convex on }\{-1,0,1\}\right\} \end{gathered}KX:={FLip0[2,2]:F is convex on [2,2]}KX:={fLip0{1,0,1}:f is convex on {1,0,1}}
By definition F Lip 0 [ 2 , 2 ] F Lip 0 [ 2 , 2 ] F inLip_(0)[-2,2]F \in \operatorname{Lip}_{0}[-2,2]FLip0[2,2] is in K X K X K_(X)K_{X}KX if
F ( λ x + ( 1 λ ) y ) λ F ( x ) + ( 1 λ ) F ( y ) F ( λ x + ( 1 λ ) y ) λ F ( x ) + ( 1 λ ) F ( y ) F(lambda x+(1-lambda)y) <= lambda F(x)+(1-lambda)F(y)F(\lambda x+(1-\lambda) y) \leq \lambda F(x)+(1-\lambda) F(y)F(λx+(1λ)y)λF(x)+(1λ)F(y)
for every x , y [ 2 , 2 ] x , y [ 2 , 2 ] x,y in[-2,2]x, y \in[-2,2]x,y[2,2] and every λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1] and f f fff is in K Y K Y K_(Y)K_{Y}KY if the divided difference [ 1 , 0 , 1 ; f ] [ 1 , 0 , 1 ; f ] [-1,0,1;f][-1,0,1 ; f][1,0,1;f] is nonnegative.
Obviously that K Y K Y K_(Y)K_{Y}KY has the (NPE)-property with respect to K X K X K_(X)K_{X}KX : for F K X F K X F inK_(X)F \in K_{X}FKX the restriction F | Y F Y F|_(Y)\left.F\right|_{Y}F|Y is in K Y K Y K_(Y)K_{Y}KY and F ( x ) = min y { 1 , 0 , 1 } [ f ( y ) + f Y | x y | ] , x [ 2 , 2 ] F ( x ) = min y { 1 , 0 , 1 } f ( y ) + f Y | x y | , x [ 2 , 2 ] F(x)=min_(y in{-1,0,1})[f(y)+||f||_(Y)|x-y|],x in[-2,2]F(x)=\min _{y \in\{-1,0,1\}}\left[f(y)+\|f\|_{Y}|x-y|\right], x \in[-2,2]F(x)=miny{1,0,1}[f(y)+fY|xy|],x[2,2] is a (NPE) extension in K X K X K_(X)K_{X}KX of f K Y f K Y f inK_(Y)f \in K_{Y}fKY.
Let
F ( x ) = { x , x [ 2 , 0 ] 1 2 x , x ( 0 , 2 ] F ( x ) = x ,      x [ 2 , 0 ] 1 2 x ,      x ( 0 , 2 ] F(x)={[-x",",x in[-2","0]],[(1)/(2)x",",x in(0","-2]]:}F(x)= \begin{cases}-x, & x \in[-2,0] \\ \frac{1}{2} x, & x \in(0,-2]\end{cases}F(x)={x,x[2,0]12x,x(0,2]
and
G ( x ) = { x 1 , x [ 2 , 1 ) 0 , x [ 1 , 1 ] 1 2 x 1 2 , x [ 1 , 1 2 ] G ( x ) = x 1 ,      x [ 2 , 1 ) 0 ,      x [ 1 , 1 ] 1 2 x 1 2 ,      x 1 , 1 2 G(x)={[-x-1",",x in[-2","-1)],[0",",x in[-1","1]],[(1)/(2)x-(1)/(2)",",x in[1,(1)/(2)]]:}G(x)= \begin{cases}-x-1, & x \in[-2,-1) \\ 0, & x \in[-1,1] \\ \frac{1}{2} x-\frac{1}{2}, & x \in\left[1, \frac{1}{2}\right]\end{cases}G(x)={x1,x[2,1)0,x[1,1]12x12,x[1,12]
It follows that G Y G Y G inY^(_|_)G \in Y^{\perp}GY (in fact G K X K X K X G K X K X K X G inK_(X)subeK_(X)-K_(X)G \in K_{X} \subseteq K_{X}-K_{X}GKXKXKX ),
F ( x ) G ( x ) = { 1 , x [ 2 , 1 ] x , x ( 1 , 0 ] 1 2 x , x ( 0 , 1 ] 1 2 , x ( 1 , 2 ] F ( x ) G ( x ) = 1 ,      x [ 2 , 1 ] x ,      x ( 1 , 0 ] 1 2 x ,      x ( 0 , 1 ] 1 2 ,      x ( 1 , 2 ] F(x)-G(x)={[1",",x in[-2","-1]],[-x",",x in(-1","0]],[(1)/(2)x",",x in(0","1]],[(1)/(2)",",x in(1","2]]:}F(x)-G(x)= \begin{cases}1, & x \in[-2,-1] \\ -x, & x \in(-1,0] \\ \frac{1}{2} x, & x \in(0,1] \\ \frac{1}{2}, & x \in(1,2]\end{cases}F(x)G(x)={1,x[2,1]x,x(1,0]12x,x(0,1]12,x(1,2]
and
F G X = F | Y Y = d ( F , Y ) , ( F G ) | Y = F | Y , F G X = F Y Y = d F , Y , ( F G ) Y = F Y , ||F-G||_(X)=||F|_(Y)||_(Y)=d(F,Y^(_|_)),(F-G)|_(Y)=F|_(Y),\|F-G\|_{X}=\left\|\left.F\right|_{Y}\right\|_{Y}=d\left(F, Y^{\perp}\right),\left.(F-G)\right|_{Y}=\left.F\right|_{Y},FGX=F|YY=d(F,Y),(FG)|Y=F|Y,
implying that F G F G F-GF-GFG is a (NPE) extension of F | Y F Y F|_(Y)\left.F\right|_{Y}F|Y. But F G F G F-GF-GFG is not convex function on [ 2 , 2 ] [ 2 , 2 ] [-2,2][-2,2][2,2] showing that, in general, F E ( F | Y ) F E F Y F-E(F|_(Y))F-\mathscr{E}\left(\left.F\right|_{Y}\right)FE(F|Y) can be strictly contained in P Y ( F ) P Y ( F ) P_(Y^(_|_))(F)P_{Y^{\perp}}(F)PY(F). Therefore equality (7) is not true without any supplementary hypotheses on the space Y Y Y^(_|_)Y^{\perp}Y.
3 3 3^(@)3^{\circ}3. Let X , Y , N X N Y X , Y , N X N Y X,Y,N_(X^('))N_(Y)X, Y, N_{X^{\prime}} N_{Y}X,Y,NXNY be as in Example 2 2 2^(@)2^{\circ}2 and
Y = { G N X : G | Y = 0 } Y = G N X : G Y = 0 Y^(_|_)={G inN_(X):G|_(Y)=0}Y^{\perp}=\left\{G \in N_{X}:\left.G\right|_{Y}=0\right\}Y={GNX:G|Y=0}
By Mc Shane's theorem (see [9]), the space N Y N Y N_(Y)N_{Y}NY has the (NPE)-property with respect to N X N X N_(X)N_{X}NX. By Corollary the subspace Y Y Y^(_|_)Y^{\perp}Y is proximinal in N X N X N_(X)N_{X}NX and every element
G G GGG of best approximation of a function F N X F N X F inN_(X)F \in N_{X}FNX by elements in Y Y Y^(_|_)Y^{\perp}Y has the form
G = F H G = F H G=F-HG=F-HG=FH for a function H E ( F | Y ) H E F Y H inE(F|_(Y))H \in \mathscr{E}\left(\left.F\right|_{Y}\right)HE(F|Y) Also d ( F , Y ) = F | Y Y d F , Y = F Y Y d(F,Y^(_|_))=||F|_(Y)||_(Y)d\left(F, Y^{\perp}\right)=\left\|\left.F\right|_{Y}\right\|_{Y}d(F,Y)=F|YY and P Y ( F ) = F E ( F | Y ) P Y ( F ) = F E F Y P_(Y^(_|_))(F)=F-E(F|_(Y))P_{Y^{\perp}}(F)=F-\mathscr{E}\left(\left.F\right|_{Y}\right)PY(F)=FE(F|Y).
Other examples to which Corollary 1 applies are given by Hahn-Banach extension theorem, by Tietze extension theorem, by Helly extension Theorem (see [7], [8], [12], [16]).

2. THE QUOTIENT MAPPING

Consider the quotient subspace M X / Y M X / Y M_(X)//Y^(_|_)M_{X} / Y^{\perp}MX/Y with respect to its subspace Y Y Y^(_|_)Y^{\perp}Y, defined by
(8) M X / Y = { F + Y : F M X } . (8) M X / Y = F + Y : F M X . {:(8)M_(X)//Y^(_|_)={F+Y^(_|_):F inM_(X)}.:}\begin{equation*} M_{X} / Y^{\perp}=\left\{F+Y^{\perp}: F \in M_{X}\right\} . \tag{8} \end{equation*}(8)MX/Y={F+Y:FMX}.
Since the subspace Y Y Y^(_|_)Y^{\perp}Y is closed in M X M X M_(X)M_{X}MX it follows that
(9)
F + Y = d ( F , Y ) , F M X F + Y = d F , Y , F M X ||F+Y^(_|_)||=d(F,Y^(_|_)),F inM_(X)\left\|F+Y^{\perp}\right\|=d\left(F, Y^{\perp}\right), F \in M_{X}F+Y=d(F,Y),FMX
is a norm on M X / Y M X / Y M_(X)//Y^(_|_)M_{X} / Y^{\perp}MX/Y
Let
(10) K X / Y := { F + Y : F K X } (10) K X / Y := F + Y : F K X {:(10)K_(X)//Y^(_|_):={F+Y^(_|_):F inK_(X)}:}\begin{equation*} K_{X} / Y^{\perp}:=\left\{F+Y^{\perp}: F \in K_{X}\right\} \tag{10} \end{equation*}(10)KX/Y:={F+Y:FKX}
and let
(11) Ker P Y K X := { F K X : 0 P Y ( F ) } (11) Ker P Y K X := F K X : 0 P Y ( F ) {:(11)KerP_(Y^(_|_))∣K_(X):={F inK_(X):0inP_(Y^(_|_))(F)}:}\begin{equation*} \operatorname{Ker} P_{Y^{\perp}} \mid K_{X}:=\left\{F \in K_{X}: 0 \in P_{Y^{\perp}}(F)\right\} \tag{11} \end{equation*}(11)KerPYKX:={FKX:0PY(F)}
be the kernel of the restriction of the metric projection P Y P Y P_(Y^(_|_))P_{Y^{\perp}}PY to K X K X K_(X)K_{X}KX.
Obviously that
Ker P Y | K X = { F K X : F X = d ( F , Y ) } = { F K X : F X = F ˙ | Y Y } . Ker P Y K X = F K X : F X = d F , Y = F K X : F X = F ˙ Y Y . KerP_(Y^(_|_))|_(K_(X))={F inK_(X):||F||_(X)=d(F,Y^(_|_))}={F inK_(X):||F||_(X)=||(F^(˙))|_(Y)||_(Y)}.\left.\operatorname{Ker} P_{Y^{\perp}}\right|_{K_{X}}=\left\{F \in K_{X}:\|F\|_{X}=d\left(F, Y^{\perp}\right)\right\}=\left\{F \in K_{X}:\|F\|_{X}=\left\|\left.\dot{F}\right|_{Y}\right\|_{Y}\right\} .KerPY|KX={FKX:FX=d(F,Y)}={FKX:FX=F˙|YY}.
The application
(12) Q K X : K X K X / Y , Q ( f ) = F + Y , F K X , (12) Q K X : K X K X / Y , Q ( f ) = F + Y , F K X , {:(12)Q_(K_(X)):K_(X)rarrK_(X)//Y^(_|_)","quad Q(f)=F+Y^(_|_)","quad F inK_(X)",":}\begin{equation*} Q_{K_{X}}: K_{X} \rightarrow K_{X} / Y^{\perp}, \quad Q(f)=F+Y^{\perp}, \quad F \in K_{X}, \tag{12} \end{equation*}(12)QKX:KXKX/Y,Q(f)=F+Y,FKX,
is called the quotient mapping of the cone K X K X K_(X)K_{X}KX onto the cone K X / Y K X / Y K_(X)//Y^(_|_)K_{X} / Y^{\perp}KX/Y. THEOREM 2. If the cone K Y K Y K_(Y)K_{Y}KY has the (NPE)-property with respect to the cone K X K X K_(X)K_{X}KX then
1 0 . K X Y + Ker P Y K X = { G + H : G Y , G Ker P Y K X } 1 0 . K X Y + Ker P Y K X = G + H : G Y , G Ker P Y K X 1^(0).K_(X)subeY^(_|_)+KerP_(Y^(_|_))∣K_(X)={G+H:G inY^(_|_),G in KerP_(Y^(_|_))∣K_(X)}\mathbf{1}^{0} . K_{X} \subseteq Y^{\perp}+\operatorname{Ker} P_{Y^{\perp}} \mid K_{X}=\left\{G+H: G \in Y^{\perp}, G \in \operatorname{Ker} P_{Y^{\perp}} \mid K_{X}\right\}10.KXY+KerPYKX={G+H:GY,GKerPYKX}
2 Q ( Ker P Y | K X ) = K X / Y ; 2 Q Ker P Y K X = K X / Y ; 2^(@)*Q( KerP_(Y^(_|_))|_(K_(X)))=K_(X)//Y^(_|_);2^{\circ} \cdot Q\left(\left.\operatorname{Ker} P_{Y^{\perp}}\right|_{K_{X}}\right)=K_{X} / Y^{\perp} ;2Q(KerPY|KX)=KX/Y;
30. F ( Q | Ker P Y | | X ) 1 ( F + Y ) P Y | K X ( F ) F Q Ker P Y | | X 1 F + Y P Y K X ( F ) F-(Q|_(KerP_(Y^(_|_))||_(X)))^(-1)(F+Y^(_|_))subeP_(Y^(_|_))|_(K_(X))(F)F-\left.\left(\left.Q\right|_{\operatorname{Ker} P_{Y^{\perp}}| |_{X}}\right)^{-1}\left(F+Y^{\perp}\right) \subseteq P_{Y^{\perp}}\right|_{K_{X}}(F)F(Q|KerPY||X)1(F+Y)PY|KX(F), for every F K X F K X F inK_(X)F \in K_{X}FKX.
Proof. 1 1 1^(@)1^{\circ}1. By Theorem 1. (b), each F K X F K X F inK_(X)F \in K_{X}FKX there has an element of best approximation G Y G Y G inY^(_|_)G \in Y^{\perp}GY and G = F H G = F H G=F-HG=F-HG=FH for a function H E ( F | Y ) H E F Y H inE(F|_(Y))H \in \mathscr{E}\left(\left.F\right|_{Y}\right)HE(F|Y). It follows that H X = F | Y Y = d ( H , Y ) H X = F Y Y = d H , Y ||H||_(X)=||F|_(Y)||_(Y)=d(H,Y^(_|_))\|H\|_{X}=\left\|\left.F\right|_{Y}\right\|_{Y}=d\left(H, Y^{\perp}\right)HX=F|YY=d(H,Y) implying H Ker P Y | K X H Ker P Y K X H in KerP_(Y^(_|_))|_(K_(X))\left.H \in \operatorname{Ker} P_{Y^{\perp}}\right|_{K_{X}}HKerPY|KX; and then F = G + Y F = G + Y F=G+Y^(_|_)F=G+Y^{\perp}F=G+Y, H Ker P Y K X H Ker P Y K X H in KerP_(Y^(_|_))∣K_(X)H \in \operatorname{Ker} P_{Y^{\perp}} \mid K_{X}HKerPYKX.
2 2 2^(@)\mathbf{2}^{\boldsymbol{\circ}}2. Let F + Y K X / Y F + Y K X / Y F+Y^(_|_)inK_(X)//Y^(_|_)F+Y^{\perp} \in K_{X} / Y^{\perp}F+YKX/Y. Since F | Y K Y F Y K Y F|_(Y)inK_(Y)\left.F\right|_{Y} \in K_{Y}F|YKY and K Y K Y K_(Y)K_{Y}KY has the (NPE)-property with respect to K X K X K_(X)K_{X}KX it follows that for every H E ( F | Y ) Ker P Y | K X H E F Y Ker P Y K X H inE(F|_(Y))sube KerP_(Y^(_|_))|_(K_(X))\left.H \in \mathscr{E}\left(\left.F\right|_{Y}\right) \subseteq \operatorname{Ker} P_{Y^{\perp}}\right|_{K_{X}}HE(F|Y)KerPY|KX we have
Q ( H ) = H + Y = F + Y Q ( H ) = H + Y = F + Y Q(H)=H+Y^(_|_)=F+Y^(_|_)Q(H)=H+Y^{\perp}=F+Y^{\perp}Q(H)=H+Y=F+Y
because F H Y F H Y F-H inY^(_|_)F-H \in Y^{\perp}FHY. Therefore Q Ker P Y | K X Q Ker P Y K X Q_(KerP_(Y^(_|_)))|_(K_(X))\left.Q_{\operatorname{Ker} P_{Y^{\perp}}}\right|_{K_{X}}QKerPY|KX is a surjection.
3 3 3^(@)3^{\circ}3. By 2 2 2^(@)2^{\circ}2, the application
(13) E = ( Q Ker P Y K X ) 1 : K X / Y 2 Ker P Y K X (13) E = Q Ker P Y K X 1 : K X / Y 2 Ker P Y K X {:(13)E=(Q_(KerP_(Y^(_|_))∣K_(X)))^(-1):K_(X)//Y^(_|_)rarr2^(KerP_(Y^(_|_))∣K_(X)):}\begin{equation*} E=\left(Q_{\operatorname{Ker} P_{Y^{\perp}} \mid K_{X}}\right)^{-1}: K_{X} / Y^{\perp} \rightarrow 2^{\operatorname{Ker} P_{Y^{\perp}} \mid K_{X}} \tag{13} \end{equation*}(13)E=(QKerPYKX)1:KX/Y2KerPYKX
given by
(14) E ( F + Y ) = E ( F | Y ) Ker P Y | K X (14) E F + Y = E F Y Ker P Y K X {:(14)E(F+Y^(_|_))=E(F|_(Y))sub KerP_(Y^(_|_))|_(K_(X)):}\begin{equation*} E\left(F+Y^{\perp}\right)=\left.\mathscr{E}\left(\left.F\right|_{Y}\right) \subset \operatorname{Ker} P_{Y^{\perp}}\right|_{K_{X}} \tag{14} \end{equation*}(14)E(F+Y)=E(F|Y)KerPY|KX
is well defined.
But then, by Theorem 1. (b), it follows that
F E ( F | Y ) P Y | K X ( F ) . F E F Y P Y K X ( F ) . F-E(F|_(Y))subeP_(Y^(_|_))|_(K_(X))(F).F-\left.\mathscr{E}\left(\left.F\right|_{Y}\right) \subseteq P_{Y^{\perp}}\right|_{K_{X}}(F) .FE(F|Y)PY|KX(F).
Theorem 2 is proved.
Using Theorem 2 one can obtain some relations between the properties of the selections associated to the metric projection P Y | K X P Y K X P_(Y^(_|_))|_(K_(X))\left.P_{Y^{\perp}}\right|_{K_{X}}PY|KX and the properties of the selections associated to the application E E EEE defined by (13) and (14). (see [3], [12], [13], [16]).

REFERENCES

3. Cobzaş, S., Mustăţa, C., Selections Associated to the Metric Projection (this journal, p. 45-52),
4. Cziper, J., Géher, L., Extension of Functions Satisfying a Lipschitz Condition, Acta Math. Sci. Hungar. 6 (1955), 213-220.
5. Deutsch, F., Linear Selections for Metric Projection, J. Functional Anal. 49 (1982), 269-292.
6. Deutsch, F., A Survey of Metric Selections, Contemporary Mathematics 18 (1983), 49-71.
7. Deutsch, F., Wu Li, Sung-Ho Park, Tietze Extensions and Continuous Selections for Metric Projections, J.A.T. 64 (1991), 55-68.
8. Deutsch, F., Wu Li and Sizwe Mabizela, Helly Extensions and Best Approximation, "Parametric Optimization and Related Topics III" (J. Guddat, H. Th. Jongen, B. Kummer and F. Nošiæka, eds.), Approximation and Optimization, vol. 3, Verlag Peter Lang, Frankfurt (1993), 107-120.
9. McShane, E. J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 834-842.
10. Mustăta, C., Best Approximation and Unique Extension of Lipschitz Fuctions, J.A.T. 19 (1977) 222-230.
11. Mustăţa, C., M-ideals in Metric Spaces, Babeş-Bolyai Univ., Fac. of Math. and Physics, Research Seminars, Seminar on Math. Anal., preprint No. 7 (1988), 65-74.
12. Mustăta, C., Selections Associated to the McShane's Extension Theorem for Lipschitz Functions, Revue d'Analyse Numérique et de la Théorie de l'Approximation 21 (1992) 2, 135-145.
13. Mustăta, C., On the Selections Associated to the Metric Projection, Revue d'Analyse Numérique et de la Théorie de l’Approximation 23 (1994) 1, 89-93.
14. Phelps, R. R., Uniqueness of Hahn-Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
15. Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
16. Sung-Ho, Park, Quotient Mappings, Helly Extensions, Hahn-Banach Extensions, Tietze Extensions, Lipschitz Extensions and Best Approximation, J. Koreean Math. Soc. 29 (1992) 2, 239-250.
Received 15 IX 1994
Academia Română
Institutul de Calcul
"Tiberiu Popoviciu"
P.O. Box 68
3400 Cluj-Napoca 1
România

    1. Banach, S., Wstep to teorii funkji rzeczywistych, Warsawa-Wroclaw, 1951.
    2. Cobzaş, S., Mustăţa, C., Norm Preserving Extension of Convex Lipschitz Functions, J.A.T. 34, (1978), 236-244.
1995

Related Posts