## Abstract

In this study we present a numerical analysis for the self-averaging of the longitudinal dispersion coefficient for transport in heterogeneous media. This is done by investigating the mean-square sample-to-sample fluctuations of the dispersion for finite times and finite numbers of modes for a random field using analytical arguments as well as numerical simulations. We consider transport of point-like injections in a quasi-periodic random field with a Gaussian correlation function. In particular, we focus on the asymptotic and pre-asymptotic behaviour of the fluctuations with the aid of a probability density function for the dispersion, and we verify the logarithmic growth of the sample-to-sample fluctuations as earlier reported in Eberhard (2004 J. Phys. A: Math. Gen. 37 2549–71). We also comment on the choice of the relevant parameters to generate quasi-periodic realizations with respect to the self-averaging of transport in statistically homogeneous Gaussian velocity fields.

## Authors

J.P. **Eberhard
**Simulation in Technology, University of Heidelberg, Germany

N. **Suciu
**Institute of Applied Mathematics, University of Erlangen-Nuremberg, Germany

C. **Vamoş
**Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

## Keywords

## Cite this paper as

J. Eberhard, N. Suciu, C. Vamoş (2007), *On the self-averaging of dispersion for transport in quasi-periodic random media*, J. Phys. A: Math. Theor., 40, 597-610, doi: 10.1088/1751-8113/40/4/002

### References

see the expanding block below

soon

## About this paper

##### Cite this paper as:

##### Print ISSN

Not available yet.

##### Online ISSN

Not available yet.

##### Google Scholar Profile

google scholar profile

[1] M. Clincy and H. Kinzelbach. *Stratified disordered media: exact solutions for transport parameters and their self-averaging properties*. J. Phys. A: Math. Gen., 34:7141–7152, 2001.

CrossRef (DOI)

[2] G. Dagan. *Theory of solute transport by groundwater.* Water Resour. Res., 19:183–215, 1987.

CrossRef (DOI)

[3] G. Dagan. *Flow and Transport in Porous Formations*. Springer Verlag, Berlin, 1989.

CrossRef (DOI)

[4] M. Dentz, H. Kinzelbach, S. Attinger, and W. Kinzelbach. *Temporal behavior of a solute cloud in a heterogeneous porous medium 1. Point-like injection*. Water Resour. Res., 36(12):3591–3604, 2000.

CrossRef (DOI)

[5] M. Dentz, H. Kinzelbach, S. Attinger, and W. Kinzelbach. *Temporal behavior of a solute cloud in a heterogeneous porous medium 3. Numerical simulations*. Water Resour. Res.,

38(7):23.1–23.13, 2002.

CrossRef (DOI)

[6] M. Dentz, H. Kinzelbach, S. Attinger, and W. Kinzelbach. *Numerical studies of the transport behavior of a passive solute in a two-dimensional incompressible random flow field*. Phys.

Rev. E, 67(046306):1–10, 2003.

CrossRef (DOI)

[7] J. Eberhard. *Approximations for transport parameters and self-averaging properties for pointlike injections in heterogeneous media*. J. Phys. A: Math. Gen, 37:2549–2571, 2004.

CrossRef (DOI)

[8] C. W. Gardiner*. Handbook of Stochastic Methods (for Physics, Chemistry and Natural Science)*. Springer, New York, 1985.

CrossRef (DOI)

[9] L. W. Gelhar. *Stochastic Subsurface Hydrology.* Prentice Hall, New Jersery, 1993.

[10] E. Guyon, C. D. Mitescu, J. Hulin, and S. Roux*. Fractals and percolution in porous media and flows?* Physica D, 38:172–178, 1989.

[11] U. Jaekel and H. Vereecken. *Renormalization group analysis of macrodispersion in a directed random flow.* Water Resour. Res., 33(10):2287–2299, 1997.

CrossRef (DOI)

[12] I. Jankovic, A. Fiori, and G. Dagan. *Flow and transport in highly heterogeneous formations: 3. Numerical simulations and comparison with theoretical results*. Water Resour. Res., 39(9):16.1–16.13, 2003.

CrossRef (DOI)

[13] H. Kesten and G. C. Papanicolaou*. A limit theorem for turbulent diffusion*. Commun. Math. Phys., 65:97–128, 1979.

CrossRef (DOI)

[14] R. Lenormand and C. Zarcone*. Invasion percolation in an etched network: measurement of a fractal dimension*. Physical Review Letters, 54(20):2226–2229, 1985.

CrossRef (DOI)

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. *Numerical Recipes in C: the art of scientific computing*. Cambridge University Press, Cambridge, UK, 1992.

[16] H. Schwarze, U. Jaekel, and H. Vereecken. *Estimation of macrodispersion by different approximation methods for flow and transport in randomly heterogeneous media*. Transport

in Porous Media, 43(2):265–287, 2001.

[17] N. Suciu, C. Vamos, and J. Eberhard. *Evaluation of the first-order approximations for transport in heterogeneous media*. Water Resour. Res., 2006.

CrossRef (DOI) (in press).

[18] N. Suciu, C. Vamo¸s, J. Vanderborght, H. Hardelauf, and H. Vereecken. *Numerical investigations on ergodicity of solute transport in heterogeneous aquifers*. Water Resour. Res., 2006. 42,W04409,

CrossRef (DOI)

[19] M. G. Trefry, F. P. Ruan, and D. McLaughlin*. Numerical simulations of preasymptotic transport in heterogeneous porous media: Departures from the Gaussian limit*. Water Resour. Res., 39(3):10:1–12, 2003.

CrossRef (DOI)

[20] N. G. van Kampen. *Stochastic Processes in Physics and Chemistry*. North-Holland, Amsterdam, 1981.

[21] C. L. Winter, C. M. Newman, and S. P. Neuman. *A perturbation expansion for diffusion in random velocity field*. SIAM J. Appl. Math., 44(2):411–424, 1984.

CrossRef (DOI)

soon