On the sequences of polynomials

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur les suites de polynômes, Buletinul Soc. de Ştiinţe din Cluj, 5 (1931), pp. 492-504 (in French).

PDF

About this paper

Journal

Buletinul Soc. de Ştiinţe din Cluj

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

ON SEQUENCES OF POLYNOMIES

T. Popoviciu
Former student of the Ecole Normale Supérieure of Paris

BULLETIN OF THE SOCIETY OF SOCIETIES OF CLUJ, ROMANIA.

BULETINUL SOCIETATII DE ŞTIINTE DIN CLUJ (ROMANIA) BULLETIN OF THE SOCIETY OF SCIENCES OF CLUJ (ROMANIA)

ON SEQUENCES OF POLYNOMIES

by

Received December 4, 1930.
Mr. Lagrange, in a paper published in "Acta Mathematica" ( 1 ), studied sequences of numbers from an algebraic point of view. He applied these to certain sequences of polynomials. In the present work, we will complement the "algebra of sequences of numbers" with an "algebra of sequences of polynomials." We will address the applications in other papers.

We only provide definitions and results. The proofs often lead to somewhat lengthy calculations, but these present no real difficulty.

  1. 1.

    Definition of a sequence of polynomials. Consider a sequence of polynomials inxx

P0,P1,Pn,\mathrm{P}_{0},\mathrm{P}_{1},\ldots\mathrm{P}_{n},\ldots (1)

taken in a specific order. This order is characterized by the numbernnwhich is the index or rank of the polynomialPn\mathrm{P}_{n}. Let us designate byp(n)p(n)the degree of the polynomialPn\mathrm{P}_{n}. IfPn\mathrm{P}_{n}is identically zero, we assume thatp(n)p(n)has a negative value as large as we want. The difference

p(n)np(n)-n (2)

is the order of the polynomialPn\mathrm{P}_{n}. Ifp(n)<0p(n)<0, so ifPn\mathrm{P}_{n}is identically zero we say that it is of order-\infty.

If the orders of all the elements of a sequence are equal to-\inftyWe say that this sequence is the zero sequence. For all other sequences, the order of the elements has an upper bound.mmFinite or infinite. Ifmmis finished, we say that the sequence is of finite ordermm. In

00footnotetext:(1) R. Lagrange „Mémoire sur les suites de polynomes" Acla Math. 51 (19 :8) p. 201.

In this case, the sequence (1) has at least one element of ordermmWe call the smallest value of the characteristic indexnnfor which

p(n)n=mp(n)-n=m

We say that a sequence is complete if all its elements have the same order. A complete sequence is necessarily of finite order and its characteristic index is 0.

Ifmmis infinite, the sequence is of infinite order. Such a sequence cannot be complete and does not admit a characteristic index. We call the class of the sequence (1) the numberkksuch as

p(0)<0,p(1)<0,p(k1)<0,p(k)0.p(0)<0,\quad p(1)<0,\ldots\quad p(k-1)<0,\quad p(k)\geqslant 0.

A sequence of negative ordermmis at least classm-mWe
ask

(ij)=i(i1)(ij+1)1.2.3j;(ij)=0,j>i.\binom{i}{j}=\frac{i(i-1)\ldots(i-j+1)}{1.2.3\ldots j}\quad;\quad\binom{i}{j}=0,j>i.

Since accents denote derivatives, we say that a class sequencekkand orderk-kis normal if

j=0i(ij)Pk+j(j)0\displaystyle\sum_{j=0}^{i}\binom{i}{j}\mathrm{P}_{k+j}^{(j)}\neq 0 (3)
i=0,1,2,\displaystyle i=0,1,2,\ldots

We see that the first members are numbers.
We denote by[P][\mathrm{P}]the sequence (1). When considering several sequences[P],[Q],[\mathrm{P}],[\mathrm{Q}],\ldotswe designate byp(n),q(n),p(n),q(n),...the degree of polynomialsPn,Qn,\mathrm{P}_{n},Q_{n},\ldots

All the relationships we write between several polynomials are verified identically with respect toxx
2. The algebra of sequences of polynomials . 101^{0}We denote by [0] the zero sequence.
202^{0}The sequel

P0=1;Pn=0,n>0\mathrm{P}_{0}=1;\quad\mathrm{P}_{n}=0,n>0

is the unit sequence and will be denoted by [1]. It is normal and of class 0.

The sequel

Pk=1,Pn=0,nk\mathrm{P}_{k}=1,\quad\mathrm{P}_{n}=0,\quad n\neq k

is the unit sequence of classk,[1]kk,[1]_{k}30.
Two suites[P],[Q][\mathrm{P}],[\mathrm{Q}]are equal if, and only if

Pn=Qnn=0,1,2,\begin{gathered}\mathrm{P}_{n}=\mathrm{Q}_{n}\\ n=0,1,2,\ldots\end{gathered}

We write

[P]=[Q][\mathrm{P}]=[\mathrm{Q}]

404^{0}The product of a sequence [P] by a numberλ\lambdais by definition a new sequel[Q][Q]given by

We write

Qn=λPnn=0,1,2,λ[Pj=[λP]\begin{gathered}Q_{n}=\lambda P_{n}\\ n=0,1,2,\ldots\\ \lambda\cdot\left[P_{j}=[\lambda P]\right.\end{gathered}

P]-\mathrm{P}]is the opposite of[P][\mathrm{P}]and is equal to[P]-[\mathrm{P}].
505^{0}The sum of two sequences[P],[Q][\mathrm{P}],[\mathrm{Q}]is a new sequel[R][\mathrm{R}]defined by

We write

Rn=Pn+Qnn=0,1,2,\begin{gathered}\mathrm{R}_{n}=\mathrm{P}_{n}+\mathrm{Q}_{n}\\ n=0,1,2,\ldots\end{gathered}
  1. 60.

    The elementary product of[P][\mathrm{P}]by[Q][\mathrm{Q}]is a new sequence [R] defined by the equalities

Rn=i=0Qi[j=0n(ij)Pnj(ij)],n=0,1,2,\mathrm{R}_{n}=\sum_{i=0}^{\infty}\mathrm{Q}_{i}\left[\sum_{j=0}^{n}\binom{i}{j}\mathrm{P}_{nj}^{(ij)}\right],\quad n=0,1,2,\ldots (4)

It is easily verified that the right-hand side contains a finite number of terms. For sequences of negative or zero order, we can write the condensed formulas

Rn=i=0nQ[j=0i(ij)Pnj(ij)],n=0,1,2,\mathrm{R}_{n}=\sum_{i=0}^{n}Q\left[\sum_{j=0}^{i}\binom{i}{j}\mathrm{P}_{nj}^{(ij)}\right],\quad n=0,1,2,\ldots (5)

We write

[Q][P]=[R][\mathrm{Q}]\cdot[\mathrm{P}]=[\mathrm{R}]

The definitions400.504^{0},5^{0}allow us to find the difference between two sequences.

The equality and addition of sequences enjoys all the properties of ordinary equality and addition.

Elementary multiplication is associative and distributive with respect to addition, but it is not generally commutative. If

[Q][P]=[P][Q][\mathrm{Q}]\cdot[\mathrm{P}]=[\mathrm{P}]\cdot[\mathrm{Q}]

we say that the sequels[P],[Q][\mathrm{P}],[\mathrm{Q}]are interchangeable. The unit sequence is interchangeable with any sequence.

Multiplication by a non-zero number does not change the order, class, normality, or permutability of a sequence.

The order of a sum is at most equal to the highest order of the sums added, and its class is at least equal to the lowest
class of the sums added. In the formula

[R]=[P]+[Q][\mathrm{R}]=[\mathrm{P}]+[\mathrm{Q}]

on a effect

r(n)max[p(n),q(n)]r(n)\leq\max[p(n),q(n)]

Whatever happens next[P][\mathrm{P}]we have

[P]+[0]=[P][\mathrm{P}]+[0]=[\mathrm{P}]

The order of a product is at most equal to the sum of the orders of its factors, and its class is at least equal to the class of the sequence being multiplied. Indeed, we have
r(n)max[q(0)+p1(n),q(1)+p1(n)1,q(2)+p1(n)2,q(p1(n))]r(n)\leq\max\left[q(0)+p_{1}(n),\quad q(1)+p_{1}(n)-1,\quad q(2)+p_{1}(n)-2,\ldots q\left(p_{1}(n)\right)\right]Or

p1(n)=max[p(n),p(n1)+1,p(n2)+2,,p(0)+n]p_{1}(n)=\max[p(n),p(n-1)+1,p(n-2)+2,\ldots,p(0)+n]

If one of the factors is [0], the product is equal to [0].
For normal sequences of class 0, the converse is true, but: in the general case, the product of two non-zero sequences can be zero; for example, for the sequences
[P]x0,0,0;[P]\quad x,0,0,\ldots 0;\ldots

[Q]1,x,x22;,(1)nxnn!,[Q]\quad 1,-x,\frac{x^{2}}{2;},\ldots\frac{(-1)^{n}x^{n}}{n!},\ldots

we have

[Q][P]=[0]1[Q]\cdot[P]=[0]^{1}

Knowing the product of two sequences, we can calculate any positive integer power. We will denote by[P]m[\mathrm{P}]^{m}, Or[mP][m\mathrm{P}]theremema m^{\text{èma }}power of the suite[P][\mathrm{P}]We posit by definition:

[P]0=[P0]=[1][P]^{0}=\left[{}_{0}P\right]=[1]

We then have form,km,kpositive integers or zero-

[P]m[P]k=[P]m+k;{[P]m}k=[P]mk.[\mathrm{P}]^{m}\cdot[\mathrm{P}]^{k}=[\mathrm{P}]^{m+k};\left\{[\mathrm{P}]^{m}\right\}^{k}=[\mathrm{P}]^{mk}.

We must say a few more words about the elementary division of: sequences.

[P]=[Q][R].[\mathrm{P}]=[\mathrm{Q}]\cdot[\mathrm{R}]. (6)

Equation (6) is not always possible in [ R ] and if it is possible the solution is not always unique.

If [R] is the sequence [1], we say that [P] has a left inverse. Let us denote by[P]g1[\mathrm{P}]_{\mathrm{g}}^{-1}this invention. We have,

[][P]g1=[I][\mathbb{P}]\cdot[\mathrm{P}]_{g}^{-1}=[\mathrm{I}]

From this we deduce that the following[P][\mathrm{P}]is divisible from the left by any sequence that has a left inverse.

Similarly, we define right division and right division.[P]d1[\mathrm{P}]_{d}^{-1}So that[P]d1[\mathrm{P}]_{d}^{-1}exists, the sequel must follow[P][\mathrm{P}]either of class 0.

If a sequel[P][P]has a left inverse and a right inverse net if

[P]g1=[P]d1[\mathrm{P}]_{g}^{-1}=[\mathrm{P}]_{d}^{-1}

We say that it is reversible. We then designate by[P]1[\mathrm{P}]^{-1}the inverse of [P]. All integer powers of such a sequence are determined.
3. We will point out some properties of normal sequences.

The product of two normal sequences is a normal sequence of class -equal to the sum of the classes of the factors

Posing

[Q][P]=[R][Q]\cdot[P]=[R]

we have

j=0i(ij)Rk+k+j(j)={j=0i(ij)Qk+i(j)}{j=0k+i(k+ij)Pk+i(j)}i=0.1;2,\begin{gathered}\sum_{j=0}^{i}\binom{i}{j}\mathrm{R}_{k+k^{\prime}+j}^{(j)}=\left\{\sum_{j=0}^{i}\binom{i}{j}Q_{k^{\prime}+i}^{(j)}\right\}\left\{\sum_{j=0}^{k^{\prime}+i}\binom{k^{\prime}+i}{j}\mathrm{P}_{k+i}^{(j)}\right\}\\ i=0,1;2,\ldots\end{gathered}

k,kk,k^{\prime}being the classes of[P][\mathrm{P}]And[Q][\mathrm{Q}]It
follows that the product of two normal sequences is always different from [0].

Every normal sequence of class 0 is invertible and its inverse is also a normal sequence of class 0.

Either[P1]\left[{}_{-1}\mathrm{P}\right]the inverse sequence; we have

{j=0i(ij)1Pj(j){|j=0i(ij)Pj(j)}=1i=0,1,2,\begin{gathered}\left\{\sum_{j=0}^{i}\binom{i}{j}-1\mathrm{P}_{j}^{(j)}\left\{\left\lvert\,\sum_{j=0}^{i}\binom{i}{j}\mathrm{P}_{j}^{(j)}\right.\right\}=1\right.\\ i=0,1,2,\ldots\end{gathered}

The normal sequences of class zero form a group. This group is not permutable, but it contains permutable subgroups.

We already know any integer power of a normal sequence of class 0.

Let's ask

Ui(j)=s=0j(js)Ps+i(s)\mathrm{U}_{i}^{(j)}=\sum_{s=0}^{j}\binom{j}{s}\mathrm{P}_{s+i}^{(s)}

and let us introduce the following notation

[has1,has2,hask]=|1has1has12has1k2has1m1has2has22has2k2has2m1haskhask2haskk2haskm|:|1has1has12has1k11has2has22has2k11haskhask2haskk1|\left[a_{1},a_{2},\ldots a_{k}\right]=\left|\begin{array}[]{cccccc}1&a_{1}&a_{1}^{2}&\ldots&a_{1}^{k-2}&a_{1}^{m}\\ 1&a_{2}&a_{2}^{2}&\ldots&a_{2}^{k-2}&a_{2}^{m}\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ 1&a_{k}&a_{k}^{2}&\ldots&a_{k}^{k-2}&a_{k}^{m}\end{array}\right|:\left|\begin{array}[]{ccccc}1&a_{1}&a_{1}^{2}&\ldots&a_{1}^{k-1}\\ 1&a_{2}&a_{2}^{2}&\ldots&a_{2}^{k-1}\\ \cdot&\cdot&\cdot&\cdot&\cdot\\ 1&a_{k}&a_{k}^{2}&\ldots&a_{k}^{k-1}\end{array}\right|

Let us now consider the following[mP][m\mathrm{P}]defined by the relationships

Pnm=n1,n2,nkUn1(0)Un2(n1)Un3(n1+n2)Unk(n1+n2++nk1)[U0(0),U0(n1),U0(n1+n2),U0(n1+n2++nk)n=0,1,2,\begin{gathered}{}_{m}\mathrm{P}_{n}=\sum_{n_{1},n_{2},\ldots n_{k}}\mathrm{U}_{n_{1}}^{(0)}\cdot\mathrm{U}_{n_{2}}^{\left(n_{1}\right)}\cdot\mathrm{U}_{n_{3}}^{\left(n_{1}+n_{2}\right)}\cdots\mathrm{U}_{n_{k}}^{\left(n_{1}+n_{2}+\cdots+n_{k-1}\right)}\\ \cdot\left[\mathrm{U}_{0}^{(0)},\mathrm{U}_{0}^{\left(n_{1}\right)},\mathrm{U}_{0}^{\left(n_{1}+n_{2}\right)},\ldots\mathrm{U}_{0}^{\left(n_{1}+n_{2}+\cdots+n_{k}\right)^{\prime}}\right.\\ n=0,1,2,\ldots\end{gathered}

the summation being extended to positive values ​​ofn1,n2,nEND n_{1},n_{2},\ldots n_{\text{fin }} verifying equality

n1+n2++nk=nn_{1}+n_{2}+\cdots+n_{k}=n

𝒌\boldsymbol{k}taking all possible values.
It can be shown that ifmmis an integer
(7)

[Pm]=[P]m\left[{}_{m}\mathrm{P}\right]=[\mathrm{P}]^{m}

It is then demonstrated that

[mmP][mP]=[mP][Pm]=[m+mP][m[mP]=[m[mP]]=[mmP]\begin{gathered}{\left[m_{\mathrm{m}}\mathrm{P}\right]\cdot\left[m^{\prime}\mathrm{P}\right]=\left[m^{\prime}\mathrm{P}\right]\cdot\left[{}_{m}\mathrm{P}\right]=\left[m_{+m^{\prime}}\mathrm{P}\right]}\\ {\left[m^{\prime}[m\mathrm{P}]=\left[m\left[m^{\prime}\mathrm{P}\right]\right]=\left[mm^{\prime}\mathrm{P}\right]\right.}\end{gathered}

We can therefore keep equality (7) as defining a power: any of the sequence[P][\mathrm{P}], normal and class 0.

We have

j=0i(ij)Pj(j)m=(j=0i(ij)Pj(Ω))m\sum_{j=0}^{i}\binom{i}{j}{}_{m}\mathrm{P}_{j}^{(j)}=\left(\sum_{j=0}^{i}\binom{i}{j}\mathrm{P}_{j}^{(\Omega)}\right)^{m}

For example, for the normal binomial sequence of class 0,
we have

P0,P10,0,0,Pnm=P1n[U0(0),U0(1),U0(2),U0(n)]\begin{gathered}\mathrm{P}_{0},\mathrm{P}_{1},0,0,\ldots 0,\ldots\\ {}_{m}\mathrm{P}_{n}=\mathrm{P}_{-1}^{n}\cdot\left[\mathrm{U}_{0}^{(0)},\mathrm{U}_{0}^{(1)},\mathrm{U}_{0}^{(2)},\ldots\mathrm{U}_{0}^{(n)}\right]\end{gathered}

The number[U0(0),U0(1),U0(n)]\left[\mathrm{U}_{0}^{(0)},\mathrm{U}_{0}^{(1)},\ldots\mathrm{U}_{0}^{(n)}\right]generalizes the number(mn)\binom{m}{n}and reduces𝔪`2\grave{\mathfrak{m}}^{2}the latter forP=10\mathrm{P}^{\prime}{}_{1}=0.

 If P10 the series \text{ Si }\mathrm{P}_{1}^{\prime}\neq 0\text{ la série }
n=1[U0(0),U0(1),U0(n)]\sum_{n=1}^{\infty}\left[\mathrm{U}_{0}^{(0)},\mathrm{U}_{0}^{(1)},\ldots\mathrm{U}_{0}^{(n)}\right]

converges absolutely regardless ofmmIt can indeed be demonstrated without
difficulty that

|[U0(0),U0(1),U0(n)]|<(nn)n!(P)1ni=0n|U0(i)|m\left|\left[\mathrm{U}_{0}^{(0)},\mathrm{U}_{0}^{(1)},\ldots\mathrm{U}_{0}^{(n)}\right]\right|<\frac{\binom{n}{n^{\prime}}}{n!\left(\mathrm{P}^{\prime}{}_{1}\right)^{n}}\sum_{i=0}^{n}\left|\mathrm{U}_{0}^{(i)}\right|m

nnbeing equal ton2\frac{n}{2}Orn12\frac{n-1}{2}following thatnnis even or odd.
4. On some particular sequences. Let us designate by[has],[b],[a],[b],\ldotsthe sequences of numbers, therefore the sequences (1) such thatp(n)0n=0,1,2,p(n)\leq 0n=0,1,2,\ldotsA sequence of numbers is always normal. Its order is equal to its class with the sign reversed.

Number sequences of class 0 form a permutable subgroup of the group of normal sequences of class 0.

A normal sequence of class 0 that is permutable with a sequence of numbers of class 0 is not necessarily a sequence of numbers. If the sequence of numbers has all its elements non-zero, then any sequence permutable with it is a sequence of numbers.

Let us consider sequences of the form
(8)

Pn=hasnxnn!,n=0,1,2,\mathrm{P}_{n}=a_{n}\frac{x^{n}}{n!},\quad n=0,1,2,\ldots

These sequences are characterized by the sequence of numbers [a]. We will denote them by[P;[has]][\mathrm{P};[a]]For such a sequence to be normal, it must belong to class 0. The conditions for normality are then

j=0i=0i(ij)hasj0\sum_{\begin{subarray}{c}j=0\\ i=0\end{subarray}}^{i}\binom{i}{j}a_{j}\neq 0

Normal sequences of the form (8) form a permutable subgroup of the group of normal sequences of class 0.

The reverse sequence

[P;[has]]1=[P1;[1has]][\mathrm{P};[a]]^{-1}=\left[{}_{-1}\mathrm{P};[-1a]\right]

is determined by the equations

The product

|i=0n(ni)1hasi|{i=0n(ni)hasi}=1n=01,2,\begin{gathered}\left|\sum_{i=0}^{n}\binom{n}{i}_{-1}a_{i}\right|\left\{\sum_{i=0}^{n}\binom{n}{i}a_{i}\right\}=1\\ n=0\quad 1,-2,\ldots\end{gathered}
[Q;[b]][P;[has]]=[R;[c]][Q;[b]]\cdot[\mathrm{P};[a]]=[\mathrm{R};[c]]

is determined by the equations

i=0n(ni)ci=(i=0n(ni)hasi)(i=0n(ni)bi)\sum_{i=0}^{n}\binom{n}{i}c_{i}=\left(\sum_{i=0}^{n}\binom{n}{i}a_{i}\right)\left(\sum_{i=0}^{n}\binom{n}{i}b_{i}\right) (9)

The power[P;[has]]m=[Pm;[hasm]][\mathrm{P};[a]]^{m}=\left[{}_{m}\mathrm{P};\left[{}_{m}a\right]\right]is given by

i=0n(ni)mhasi=(i=0n(ni)has)mn=0,1,2,\begin{gathered}\sum_{i=0}^{n}\binom{n}{i}_{m}a_{i}=\left(\sum_{i=0}^{n}\binom{n}{i}a\right)^{m}\\ n=0,1,2,\ldots\end{gathered}

From equations (9) we easily derive

cn=i=0n(ni)bi(r=0i(ir)hasni+r)=i=0n(ni)hasi(r=0i(ir)bni+).c_{n}=\sum_{i=0}^{n}\binom{n}{i}b_{i}\left(\sum_{r=0}^{i}\binom{i}{r}a_{n-i+r}\right)=\sum_{i=0}^{n}\binom{n}{i}a_{i}\left(\sum_{r=0}^{i}\binom{i}{r}b_{n-i+}\right).

If the series

Σhasnzn,Σbnzn\Sigma a_{n}z^{n},\Sigma b_{n}z^{n}

converge inside circles of radius respectively equal toRhasR_{a},Rb\mathbf{R}_{b}, the series

Σcnzn\Sigma c_{n}z^{n}

converges certainly inside the circle of radius

Rc=1(1+1Rhas)(1+1Rb)1\mathrm{R}_{c}=\frac{1}{\left(1+\frac{1}{\mathrm{R}_{a}}\right)\left(1+\frac{1}{\mathrm{R}_{b}}\right)-1}

but it may eventually converge outside this circle.
5. The continuation[HAS][\mathrm{A}]is a harmonic sequence if

HAS0=cte,HASn=HASn1,n=1.2,\mathrm{A}_{0}=c^{te},\mathrm{\penalty 10000\ A}_{n}^{\prime}=\mathrm{A}_{n-1},\quad n=1,2,\ldots

Such a sequence is characterized by a sequence of numbers[α][\alpha]and we have

HASn=α0n!xn+α1(n1)!xn1++αn\mathrm{A}_{n}=\frac{\alpha_{0}}{n!}x^{n}+\frac{\alpha_{1}}{(n-1)!}x^{n-1}+\cdots+\alpha_{n}

Every harmonic sequence is normal and of class 0. Let us consider the more general sequences of the form

Pn=hasnHASn,n=0,1,2,\mathrm{P}_{n}=a^{n}\mathrm{\penalty 10000\ A}_{n},\quad n=0,1,2,\ldots

[A] being a harmonic sequence. Let us denote these sequences by[P;[α],has][\mathrm{P};[\alpha],a]Sequences of this form are normal and of class 0 ifhas1a\neq-1They form a group. The reverse sequence[P1;[α1],has1]\left[{}_{-1}\mathrm{P};\left[{}_{-1}\alpha\right],{}_{-1}a\right]is such that

1has=has1+has-1a=-\frac{a}{1+a}

and the rest[1α][-1\alpha]is it, that the sequel

α01,α11,α21,(1)nαn1,{}_{-1}\alpha_{0},-{}_{-1}\alpha_{1},-{}_{-1}\alpha_{2},\ldots(-1)^{n}{}_{-1}\alpha_{n},\ldots

is the opposite of[α][\alpha].

The product

[R;[γ],c]=[Q;[β],b].[P;[α],has][\mathrm{R};[\gamma],c]=[\mathrm{Q};[\beta],b].[\mathrm{P};[\alpha],a]

is obtained using the formulas

c=has+b+hasbcnγn=i=0nbi(has+1)ihasniαniβin=0,1,2,\begin{gathered}c=a+b+ab\\ c^{n}\gamma_{n}=\sum_{i=0}^{n}b^{i}(a+1)^{i}a^{n-i}\alpha_{n-i}\beta_{i}\\ n=0,1,2,\ldots\end{gathered}

Regarding power,
we generally have

[Pm;[αm],hasm]=[P;[α],has]mmhas=(has+1)n1\begin{gathered}{\left[{}_{m}\mathrm{P};\left[{}_{m}\alpha\right],{}_{m}a\right]=[\mathrm{P};[\alpha],a]^{m}}\\ ma=(a+1)^{n}-1\end{gathered}

We see that this group is not permutable.
6. Transformation of a sequence with respect to a fundamental sequence. A sequence is said to be fundamental if it is normal and of class 1. Let
[G] be a fundamental sequence.

G0,G1,Gn,\mathrm{G}_{0},\mathrm{G}_{1},\ldots\mathrm{G}_{n},\ldots

OrG0=0,G1=cte0\mathrm{G}_{0}=0,\mathrm{G}_{1}=c^{te}\neq 0We consider positive integer powers.[mG][m\mathrm{G}]of[G][\mathrm{G}]The sequel[mG][m\mathrm{G}]is normal and of class m. The sequence [G] will also be designated by [1G]. The sequence [0G] is the unit sequence.

We call the transformed sequence[P][P]in relation to the fundamental sequence[G][G]the new sequel
]Q]

Q0,Q1,Qn,Q_{0},Q_{1},\ldots Q_{n},\ldots
  • obtained using the equations

P=i=0nQi.iGn\displaystyle\mathrm{P}=\sum_{i=0}^{n}\mathrm{Q}_{i.i}\mathrm{G}_{n} (10)
n=0,1,2,\displaystyle n=0,1,2,\ldots

The sequence [Q] is completely determined by these equations since

Gnn=i=0n1(s=0i(is)Gs+1(s))0n=1,2,3,\begin{gathered}{}_{n}\mathrm{G}_{n}=\prod_{i=0}^{n-1}\left(\sum_{s=0}^{i}\binom{i}{s}\mathrm{G}_{s+1}^{(s)}\right)\neq 0\\ n=1,2,3,\ldots\end{gathered}

precisely express the normality of the fundamental sequence. We will consider the transformed sequence as being taken with respect to the sequence[G][G]and we designate herby[QG]\operatorname{par}[Q\mid G].

For sequences considered in relation to a fundamental sequence, we can also establish an algebra. This algebra will be characterized by multiplication.

The product

[QG][PG]==[RG][Q\mid G]\cdot[P\mid G]==[R\mid G]

is defined by the equalities
(11)

i=0nRi.iGn=i=0(r=0iQr.rGi)[j=0n(ij)(s=0njPs.sGnj)(ij)]n=0,1,2,\begin{gathered}\sum_{i=0}^{n}\mathrm{R}_{i.i}\mathrm{G}_{n}=\sum_{i=0}^{\infty}\left(\sum_{r=0}^{i}Q_{r.r}\mathrm{G}_{i}\right)\left[\sum_{j=0}^{n}\binom{i}{j}\left(\sum_{s=0}^{n-j}\mathrm{P}_{s.s}\mathrm{G}_{n-j}\right)^{(i-j)}\right]\\ n=0,1,2,\ldots\end{gathered}

In this way, the product of the transforms of two sequences is equal to the transform of their elementary product.

We see that elementary multiplication corresponds to sequences taken with respect to the tondamental sequence.

0,1,0,0,0,0,1,0,0,\ldots 0,\ldots

The fundamental sequence[G][G]was taken herself in relation to this sequel.

Let[G],[H][G],[H]two fundamental sequences. In general, the transform[PH][P\mid H]with respect to the sequence [G] is a sequence [Q | Gy] defined by the equalities

i=0nPi.iHn=i=0nQi.iGnn=0,1,2,\begin{gathered}\sum_{i=0}^{n}\mathrm{P}_{i.i}\mathrm{H}_{n}=\sum_{i=0}^{n}\mathrm{Q}_{i.i}\mathrm{G}_{n}\\ n=0,1,2,\ldots\end{gathered}

Let us designateby¯[GG]\overline{\operatorname{par}}[G\mid G]the transform of the fundamental sequence
(12)

0,1,0,0,0,0,1,0,0,\ldots 0,\ldots

compared to[G][\mathrm{G}]This sequence is given by the equalities

i=0nG¯i.iGn={1n=10n1\sum_{i=0}^{n}\overline{\mathrm{G}}_{i.i}\mathrm{G}_{n}=\begin{cases}1&n=1\\ 0&n\neq 1\end{cases}

The sequel[G¯G]\overline{[G}\mid G]is the inverse of [G]. We can calculate thememe m^{\text{eme }}positive whole power[mG¯G][m\overline{\mathrm{G}}\mid\mathrm{G}]of[G¯G][\overline{\mathrm{G}}\mid\mathrm{G}]We find that this power is given by the equations

G¯0m=G¯1m==G¯m1m=0i=mnG¯tmG={1n=m0n>m\begin{gathered}{}_{m}\overline{\mathrm{G}}_{0}={}_{m}\overline{\mathrm{G}}_{1}=\cdots={}_{m}\overline{\mathrm{G}}_{m-1}=0\\ \sum_{i=m}^{n}{}_{m}\overline{\mathrm{G}}_{\ell\cdot t}\mathrm{G}=\begin{cases}1&n=m\\ 0&n>m\end{cases}\end{gathered}

We also

G0m=G1m==Gm1m=0i=mnGi,imG¯n={1n=m0n>m\begin{gathered}{}_{m}\mathrm{G}_{0}={}_{m}\mathrm{G}_{1}=\cdots={}_{m}\mathrm{G}_{m-1}=0\\ \sum_{i=m}^{n}{}_{m}\mathrm{G}_{i,i}\overline{\mathrm{G}}_{n}=\begin{cases}1&n=m\\ 0&n>m\end{cases}\end{gathered}

Let us also mention the formulas

i=0nG¯mmn+imiGm=0n=1.2,\begin{gathered}\sum_{i=0}^{n}{}_{m-i}\overline{\mathrm{G}}_{m\cdot m-n+i}\mathrm{G}_{m}=0\\ n=1,2,\ldots\end{gathered}

If we consider the inverse sequence with respect to sequence (12), it is also a fundamental sequence. Using the inverse sequence, formulas (10) and (11) can be written

Qn=i=0nPiiG¯nn=0,1,2,Rn=i=0niG¯n{α=0(r=0αQrrGhas)[i=0i(αj)(s=0i1PssGtj)(αj)]}n=0,1,2,\begin{gathered}\mathrm{Q}_{n}=\sum_{i=0}^{n}\mathrm{P}_{i\cdot i}\overline{\mathrm{G}}_{n}\\ n=0,1,2,\ldots\\ \mathrm{R}_{n}=\sum_{i=0}^{n}i\overline{\mathrm{G}}_{n}\left\{\sum_{\alpha=0}^{\infty}\left(\sum_{r=0}^{\alpha}\mathrm{Q}_{r\cdot r}\mathrm{G}_{a}\right)\left[\sum_{i=0}^{i}\binom{\alpha}{j}\left(\sum_{s=0}^{i-1}\mathrm{P}_{s\cdot s}\mathrm{G}_{t-j}\right)^{(\alpha-j)}\right]\right\}\\ n=0,1,2,\ldots\end{gathered}

Suppose in particular that these are sequences of negative or zero order; we can write

R=i=0nQi(i=0nji+iGn.Bi+1,i),n=0,1,2,\mathrm{R}=\sum_{i=0}^{n}\mathrm{Q}_{i}\left(\sum_{i=0}^{n-j}i+i\mathrm{G}_{n}.\mathrm{B}_{i+1,i}\right),\quad n=0,1,2,\ldots

Or

Bi,j=r=0ijjGr+j,HASi,r+jHASi,j=r=0j(jr)(s=0irPs,sGir)(Lr)\begin{gathered}\mathrm{B}_{i,j}=\sum_{r=0}^{i-j}j\mathrm{G}_{r+j},\mathrm{\penalty 10000\ A}_{i},r+j\\ \mathrm{\penalty 10000\ A}_{i,j}=\sum_{r=0}^{j}\binom{j}{r}\left(\sum_{s=0}^{i-r}\mathrm{P}_{s,s}\mathrm{G}_{i-r}\right)^{(l-r)}\end{gathered}
  1. 7.

    The class and order of a sequence are invariant under a transformation. The characteristic index is also independent of a transformation. Permutability is a property invariant under a transformation.

If the following[PG][\mathrm{P}\mid\mathrm{G}]is taken in relation to the fundamental sequence[G][\mathrm{G}]We say that she is normal if she is of classkk, of order -kkand if.

j=0kG¯k+mj+mBj+m,0m=0,1,2,\begin{gathered}\sum_{j=0}^{k}{}_{j+m}\overline{\mathrm{G}}_{k+m}\mathrm{\penalty 10000\ B}_{j+m},\neq 0\\ m=0,1,2,\ldots\end{gathered}

The quantities on the left-hand side are numbers. Indeed, in this case, we have
...

HASi,j=0 if i<j+k\mathrm{A}_{i,j}=0\quad\text{ si }\quad i<j+k

m=0kf+mG¯k+mB/+m,m=G¯kk+m+mmGmHASk+m,m\sum_{m=0}^{k}f+m\overline{\mathrm{G}}_{k+m}\cdot\mathrm{\penalty 10000\ B}_{/+m,m}={}_{k+m}\overline{\mathrm{G}}_{k}+m\cdot m\mathrm{G}_{m}\cdot\mathrm{\penalty 10000\ A}_{k+m,m}\Rightarrow

=G¯k+mmk+mGmr=0m(mr)(s=0mr(mrs)Pk+sk+s(s)Gk+mr(mrs))={}_{k+m}\overline{\mathrm{G}}_{k+m\cdot m}\mathrm{G}_{m}\sum_{r=0}^{m}\binom{m}{r}\left(\sum_{s=0}^{m-r}\binom{m-r}{s}\mathrm{P}_{k+s^{\prime}k+s}^{(s)}\mathrm{G}_{k+m-r}^{(m-r-s)}\right)

We can therefore see that a normal sequence transforms into a normal sequence.

It follows that the transform with respect to [G] of a normal sequence of class 0 has an inverse which is equal to the transform of the inverse.

The multiplication of sequences of numbers taken with respect to a fundamental sequence[G][G]is done according to the ordinary rule

cn=i=0nhasnibnc_{n}=\sum_{i=0}^{n}a_{n-i}b_{n}

Therefore:
Sequences of class numbers0,[hasG]0,[a\mid G]torment a permutable subgroup of the group of normal sequences of class zero.

Either[H][\mathrm{H}]A normal sequence of class 1. Sequences[P][\mathrm{P}]of the shape

Pn\displaystyle\mathrm{P}_{n} =i=0nhasiiHn\displaystyle=\sum_{i=0}^{n}a_{i\cdot i}\mathrm{H}_{n}
n\displaystyle n =0,1,2,\displaystyle=12,\ldots

hasia_{i}being constants, form a permutable group.
8. We could study various other questions relating to sequences of polynomials. The study of sequences enjoying particular properties leads to interesting identities, as Mr. Lagrange did for sequences of numbers ( 1 ). We also note that Mr. Lagrange's conception is as follows: We associate with a sequence of numbers [hasathe series of powers

has0+has1z+has2z2++hasnzn+a_{0}+a_{1}z+a_{2}z^{2}+\cdots+a_{n}z^{n}+\cdots

(') loc. cit.

The reader will easily notice that we associate the functional operation with the sequence [P]:

P0+P1D+P2D2++PnDn+D=ddx\mathrm{P}_{0}+\mathrm{P}_{1}\mathrm{D}+\mathrm{P}_{2}\mathrm{D}^{2}+\cdots+\mathrm{P}_{n}\mathrm{D}^{n}+\cdots\quad\mathrm{D}=\frac{d}{dx}

This new perspective has allowed us to generalize Lagrange's theory. We have already presented it in a previous paper where we gave some applications. In particular, we gave interesting functional properties for binomial sequences, which Lagrange also studied under the name of interpolation sequences ( 1 ).
(1) See T. Popoviciu "Asupra unor polinoame remarcabile". The note at the end of the paper. (Autographed 1927).

1931

Related Posts