## Abstract

?

## Authors

**A.B. Németh
**Institute of Mathematics Cluj-Napoca, (ICTP)

## Keywords

?

### References

See the expanding block below.

## Paper coordinates

A.B. Nemeth, *On the subdifferentiability of convex operators, *J. London Math. Soc., s2-34 (1986) no. 3, pp. 552–558

https://doi.org/10.1112/jlms/s2-34.3.552

## About this paper

##### Journal

Journal of the London Mathematical Society

##### Publisher Name

Oxford Academic

##### Print ISSN

?

##### Online ISSN

1469-7750

##### Google Scholar Profile

?

[1] J. M. BORWEIN, ‘Continuity and differentiability properties of convex operators’, Proc. London Math. Soc. (3) 44 (1982) 420-444.

[2] J. M. BORWEIN, ‘Subgradients of convex operators’, Math. Operationsforsch. Statist. Ser. Optim. 15 (1984) 179-191.

[3] W. W. BRECKNER and G. ORBAN, ‘On the continuity of convex mappings, Rev. Anal. Numer. Theor. Approx. 6 (1977) 117-123.

[4] M. M. FEL’DMAN, ‘About the sufficient conditions of the existence of supporting operators to sublinear mappings’, Sibirsk. Mat. t . 16 (1975) 132-138 (Russian).

[5] V. L. LEVIN, ‘The subdifferentials of convex mappings and composed functional’, Sibirsk. Mat. It. 13 (1972) 1295-1303 (Russian).

[6] C. W. MCARTHUR, ‘ In what spaces is every closed normal cone regular?’, Proc. Edinburgh Math. Soc. (2) 17 (1970) 121-125.

[7] C. W. MCARTHUR, ‘Convergence of monotone nets in ordered topological vector spaces’, Studia Math. 34(1970) 1-16.

[8] A. B. NGMETH, ‘Some differential properties of convex mappings’, Mathematica (Cluj) 22 (45) (1980) 107-114.

[9] A. B. NEMETH, ‘Sequential regularity and directional differentiability of convex operators are equivalent’, preprint, Babes-Bolyai University 1984.

[10] A. B. NEMETH, ‘On some universal subdifferentiability properties of ordered vector spaces’, preprint, Babes-Bolyai University 1985.

[11] N. S. PAPAGFORGIU, ‘Nonsmooth analysis on partially ordered vector spaces: part 1—convex case’ Pacific J. Math 107 (1983) 403-485.

[12] A. L. PERESSINI, Ordered topological vector spaces (Harper & Row, New York 1967).

[13] H. SCHAFFER, Banach lattices and positive operators (Springer, Berlin 1974).

[14] M. VALADIER, ‘Sous-differentiabilite de fonctions convexes a valuers dans un espace vectoriel ordonne’ Math. Scand. 30 (1972) 65-74.

[15] J. ZOWE, ‘Subdifferentiability of convex functions with values in ordered topological vector spaces’ Math. Scand. 34 (1974) 69-83.