On the two-dimensional inverse problem of dynamics

Abstract

The authors extend the deduction of the equations satisfied by the force fields from inertial to rotating frames, when the curves of a certain family are known to be solutions for the equations of motion. Then Drimbii’s equation is obtained as a consequence of this result. The works of Hadamard and Moiseev are proved to be closely related to the inverse problem of dynamics.

Authors

Arpad Pal
Babes-Bolyai  University, Astronomical Observatory Cluj-Napoca, Romania

Mira-Cristiana Anisiu
Mathematical Institute of the Romanian Academy, Cluj-Napoca, Romania

Keywords

inverse problem of dynamics – inertial frame – rotating frame

Paper coordinates

Á. Pál, M.-C. Anisiu, On the two-dimensional inverse problem of dynamics, Astron. Nachr. 317 (3) (1996), 205-209.

PDF

??

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

Bertrand, J., 1877, Compt. Rend. 84, 671
Bozis, G., 1995, Inverse Problems 11, 687
Broucke, R., Lass, H.,  1977, Celestial Mechanics 16, 215
Dainelli, U., 1880, Giornalo di Mat. 18, 271
Drimbk, C.,  1963, St. Cerc. Astron. 8, 7 (in Romanian)
Hadamard, J.,  1897, Journal de Math. pures et appl. 5 s&, tome 3, 331
Jukovsky, N. E.,  1890, Izv. Imper. Obsch. Lubit. Estestv. 65, No.2, 43 (in Russian)
Moiseev, N. G.,  1934, Atti dela Reale Accad. Naz. dei Lincei 20 , 178, 256
Moiseev, N. G. : 1936, Trudy G.A.Y.Sh. 7, 5 (in Russian)
Newton, I. : 1687, Philosophiae Naturalis Principia Mathernatica, London
Shorokhov, S.G. : 1988, Celest. Mech. 44, 193
Stavinschi, M., Mioc, V. : 1993, Astron. Nachr. 314, 91
Szebehely, V. : 1974, in: E. Proverbio (ed.): Proc. Intern. Meeting on Earth’s Rotations by Satellite Observations. The
Szebehely, V., Broucke, R.: 1981, Celest. Mech. 24, 23
Whittaker, E. T. : 1904, Analytical Dynamics of Particles and Rigid Bodies. Cambridge Univ. Press, pp. 93 and 107.

1996

Related Posts