Abstract
The authors extend the deduction of the equations satisfied by the force fields from inertial to rotating frames, when the curves of a certain family are known to be solutions for the equations of motion. Then Drimbii’s equation is obtained as a consequence of this result. The works of Hadamard and Moiseev are proved to be closely related to the inverse problem of dynamics.
Authors
Arpad Pal
Babes-Bolyai University, Astronomical Observatory Cluj-Napoca, Romania
Mira-Cristiana Anisiu
Mathematical Institute of the Romanian Academy, Cluj-Napoca, Romania
Keywords
inverse problem of dynamics – inertial frame – rotating frame
Paper coordinates
Á. Pál, M.-C. Anisiu, On the two-dimensional inverse problem of dynamics, Astron. Nachr. 317 (3) (1996), 205-209.
??
About this paper
Journal
Publisher Name
DOI
Print ISSN
Online ISSN
google scholar link
Bertrand, J., 1877, Compt. Rend. 84, 671
Bozis, G., 1995, Inverse Problems 11, 687
Broucke, R., Lass, H., 1977, Celestial Mechanics 16, 215
Dainelli, U., 1880, Giornalo di Mat. 18, 271
Drimbk, C., 1963, St. Cerc. Astron. 8, 7 (in Romanian)
Hadamard, J., 1897, Journal de Math. pures et appl. 5 s&, tome 3, 331
Jukovsky, N. E., 1890, Izv. Imper. Obsch. Lubit. Estestv. 65, No.2, 43 (in Russian)
Moiseev, N. G., 1934, Atti dela Reale Accad. Naz. dei Lincei 20 , 178, 256
Moiseev, N. G. : 1936, Trudy G.A.Y.Sh. 7, 5 (in Russian)
Newton, I. : 1687, Philosophiae Naturalis Principia Mathernatica, London
Shorokhov, S.G. : 1988, Celest. Mech. 44, 193
Stavinschi, M., Mioc, V. : 1993, Astron. Nachr. 314, 91
Szebehely, V. : 1974, in: E. Proverbio (ed.): Proc. Intern. Meeting on Earth’s Rotations by Satellite Observations. The
Szebehely, V., Broucke, R.: 1981, Celest. Mech. 24, 23
Whittaker, E. T. : 1904, Analytical Dynamics of Particles and Rigid Bodies. Cambridge Univ. Press, pp. 93 and 107.