On the uniqueness of extension and unique best approximation in the dual of an asymmetric normed linear space

Abstract


A well known result of R. R. Phelps (1960) asserts that in order that every linear continuous functional, defined on a subspace \(Y\) of a real normed space \(X\), have a unique norm preserving extension it is necessary and sufficient that its annihilator \(Y^{\perp}\) be a Chebyshevian subspace of \(X\ast\). The aim of this note is to show that this result holds also in the case of spaces with asymmetric norm.

Authors

Costica Mustăţa
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academ, Romania

Keywords

Asymmetric normed spaces; extensions preserving asymmetric norm; best approximation

Paper coordinates

C. Mustăţa, On the uniqueness of extension and unique best approximation in the dual of an asymmetric normed linear space, Rev. Anal. Numer. Theor. Approx. 32 (2003) no. 2, 187-192.

PDF

About this paper

Journal

Revue d’Analyse Numerique et de Theorie de l’Approximation

Publisher Name

Publising Romanian Academy

DOI
Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

[1] Alegre, C., Ferrer, J.andGregori, V.,On the Hahn–Banach theorem in certainlinear quasi-uniform structures,Acta Math. Hungar,82, pp. 315–320, 1999.
[2] Borodin, P. A.,The Banach–Mazur Theorem for spaces with asymmetric norm andits applications in convex analysis, Mathematical Notes,69, no. 3, pp. 298–305, 2001.
[3] Cobzas S.,Phelps type duality results in best approximation,Rev. Anal. Numer.Theor. Approx.,31, no. 1, pp. 29–43, 2002.
[4] Dolzhenko, E. P.andSevast’yanov, E. A.,Approximation with sign-sensitiveweights, Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 62, no. 6,pp. 59–102, 1998 and63, no. 3, pp. 77–118, 1999.
[5] Ferrer, J., Gregori, V.andAlegre, C.,Quasi-uniform structures in linear lattices,Rocky Mountain J. Math.,23, pp. 877–884, 1993.
[6] Garcia-Raffi, L. M., Romaguera, S.and Sanchez Perez, E. A.,Extension ofasymmetric norms to linear spaces, Rend. Istit. Mat. Trieste,XXXIII, pp. 113–125,2001.
[7] Garcia-Raffi, L. M., Romaguera S.and Sanchez-Perez, E. A.,The dual space ofan asymmetric normed linear space,Quaestiones Mathematicae,26, pp. 83–96, 2003.
[8] Krein, M. G.and Nudel’man, A. A.,The Markov Moment Problem and ExtremumProblems, Nauka, Moscow, 1973 (in Russian).
[9] Kopperman, R. D.,All topologies come from generalized metrics, Amer. Math.Monthly,95, pp. 89–97, 1988.
[10] McShane, E. J.,Extension of range of functions, Bull. Amer. Math. Soc.,40, pp. 847–842, 1934.
[11] Mustata, C.,Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev.Anal. Numer. Theor. Approx.,30, no. 1, pp. 61–67, 2001.
[12] Mustata, C.,Extensions of convex semi-Lipschitz functions on quasi-metric linearspaces, Seminaire de la Theorie de la Meileure Approximation Convexite et Optimiza-tion, Cluj-Napoca, le 29 novembre, pp. 85–92, 2001.
[13] Mustata, C.,A Phelps type theorem for spaces with asymmetric norms, Bul. Stiint.Univ. Baia-Mare, Ser. B,XVIII, no. 2, pp. 275–280, 2002.
[14] Phelps, R. R.,Uniqueness of Hahn–Banach extension and unique best approximation,Trans. Amer. Math. Soc.,95, pp. 238–255, 1960.
[15] Romaguera, S.and Sanchis, M.,Semi-Lipschitz functions and best approximation inquasi-metric spaces, J. Approx. Theory,103, pp. 292–301, 2000.
[16] Singer, I.,Best approximation in normed linear spaces by elements of linear subspaces,Ed. Acad. RSR, Bucharest, 1967 (in Romanian); English Translation, Springer, Berlin,1970

Paper (preprint) in HTML form

2003-Mustata-On the uniqueness of extension and unique-Jnaat

ON THE UNIQUENESS OF EXTENSION AND UNIQUE BEST APPROXIMATION IN THE DUAL OF AN ASYMMETRIC NORMED LINEAR SPACE

COSTICĂ MUSTĂTA*

Abstract

A well known result of R. R. Phelps (1960) asserts that in order that every linear continuous functional, defined on a subspace Y Y YYY of a real normed space X X XXX, have a unique norm preserving extension it is necessary and sufficient that its annihilator Y Y Y^(_|_)Y^{\perp}Y be a Chebyshevian subspace of X X X^(**)X^{*}X. The aim of this note is to show that this result holds also in the case of spaces with asymmetric norm.

MSC 2000. 41A65, 46A22, 46B20.
Keywords. Asymmetric normed spaces, extensions preserving asymmetric norm, best approximation.

1. INTRODUCTION

Let X X XXX be a real linear space. A function ∣: X [ 0 , ) ∣: X [ 0 , ) ||*∣:X rarr[0,oo)\| \cdot \mid: X \rightarrow[0, \infty)∣:X[0,) is called an asymmetric norm if it satisfies all the usual axioms of a norm, excepting the absolute homogeneity, which is replaced by positive homogeneity, i.e.,
λ x | = λ x | , x X , λ 0 . λ x | = λ x | , x X , λ 0 . ||lambda x|=lambda||x|,quad AA x in X,AA lambda >= 0.\|\lambda x|=\lambda \| x|, \quad \forall x \in X, \forall \lambda \geq 0 .λx|=λx|,xX,λ0.
The asymmetric norm is called with extended values if there exists x X x X x in Xx \in XxX such that x ∣= + x ∣= + ||x∣=+oo\| x \mid=+\inftyx∣=+. The pair ( X , X , X,||*||X,\|\cdot\|X, ) is called a space with asymmetric norm (see [8], [2]).
In a space with asymmetric norm it is possible that x x x x ||x||!=||-x∣\|x\| \neq \|-x \midxx for some x X x X x in Xx \in XxX. The asymmetric norm generates a topology having as a neighborhood base the balls B ( x , r ) = { y X : y x ∣< r } , x X , r 0 B ( x , r ) = { y X : y x ∣< r } , x X , r 0 B(x,r)={y in X:||y-x∣<r},x in X,r >= 0B(x, r)=\{y \in X: \| y-x \mid<r\}, x \in X, r \geq 0B(x,r)={yX:yx∣<r},xX,r0, but the topological space ( X , τ ) X , τ (X,tau_(||*∣))\left(X, \tau_{\| \cdot \mid}\right)(X,τ) is not a linear topological space, because the multiplication by scalars is not a continuous operation (see [2, p. 199]).
Let X # X # X^(#)X^{\#}X# be the algebraic dual of X X XXX, i.e. the space of all linear functional on X X XXX. We say that f X # f X # f inX^(#)f \in X^{\#}fX# is bounded on X X XXX if
(1) sup { f ( x ) : x X , x ∣≤ 1 } < (1) sup { f ( x ) : x X , x ∣≤ 1 } < {:(1)s u p{f(x):x in X","quad||x∣≤1} < oo:}\begin{equation*} \sup \{f(x): x \in X, \quad \| x \mid \leq 1\}<\infty \tag{1} \end{equation*}(1)sup{f(x):xX,x∣≤1}<
It is immediate that if f , g X # f , g X # f,g inX^(#)f, g \in X^{\#}f,gX# are bounded then their sum f + g f + g f+gf+gf+g and the product λ f λ f lambda f\lambda fλf for λ 0 λ 0 lambda >= 0\lambda \geq 0λ0 are bounded too. This shows that the set of all bounded linear functionals on X X XXX is a cone (see [2]), or an ac-space, according to [7].
In general, it is possible that for a bounded linear functional f f fff on ( X , X , X,||*||X,\|\cdot\|X, ) the linear functional f f -f-ff be not bounded. Such an example is given by the functional f ( x ) = x ( 1 ) f ( x ) = x ( 1 ) f(x)=x(1)f(x)=x(1)f(x)=x(1) defined on the space
X = { x : [ 0 , 1 ] R x continuous and 0 1 x ( t ) d t = 0 } X = x : [ 0 , 1 ] R x  continuous and  0 1 x ( t ) d t = 0 X={x:[0,1]rarrR∣x" continuous and "int_(0)^(1)x(t)dt=0}X=\left\{x:[0,1] \rightarrow \mathbb{R} \mid x \text { continuous and } \int_{0}^{1} x(t) \mathrm{d} t=0\right\}X={x:[0,1]Rx continuous and 01x(t)dt=0}
equipped with the asymmetric norm
x ∣= max { x ( t ) : t [ 0 , 1 ] } , x X . x ∣= max { x ( t ) : t [ 0 , 1 ] } , x X . ||x∣=max{x(t):t in[0,1]},x in X.\| x \mid=\max \{x(t): t \in[0,1]\}, x \in X .x∣=max{x(t):t[0,1]},xX.
Taking x n ( t ) = 1 n t n 1 x n ( t ) = 1 n t n 1 x_(n)(t)=1-nt^(n-1)x_{n}(t)=1-n t^{n-1}xn(t)=1ntn1 it follows x n = 1 x n = 1 ||x_(n)||=1\left\|x_{n}\right\|=1xn=1 and ( f ) ( x n ) = f ( x n ) = ( x n ) ( 1 ) = n 1 ( f ) x n = f x n = x n ( 1 ) = n 1 (-f)(x_(n))=f(-x_(n))=(-x_(n))(1)=n-1(-f)\left(x_{n}\right)=f\left(-x_{n}\right)= \left(-x_{n}\right)(1)=n-1(f)(xn)=f(xn)=(xn)(1)=n1, implying
sup { ( f ) ( x ) : x ∣≤ 1 } sup { ( f ) ( x n ) : n N } = + . sup { ( f ) ( x ) : x ∣≤ 1 } sup ( f ) x n : n N = + . s u p{(-f)(x):||x∣≤1} >= s u p{(-f)(x_(n)):n inN}=+oo.\sup \{(-f)(x): \| x \mid \leq 1\} \geq \sup \left\{(-f)\left(x_{n}\right): n \in \mathbb{N}\right\}=+\infty .sup{(f)(x):x∣≤1}sup{(f)(xn):nN}=+.
For a bounded linear functional f f fff put
(2) f ∣= sup { f ( x ) : x X , x ∣≤ 1 } (2) f ∣= sup { f ( x ) : x X , x ∣≤ 1 } {:(2)||f∣=s u p{f(x):x in X","||x∣≤1}:}\begin{equation*} \| f \mid=\sup \{f(x): x \in X, \| x \mid \leq 1\} \tag{2} \end{equation*}(2)f∣=sup{f(x):xX,x∣≤1}
It follows that the function ||*∣\| \cdot \mid defined by (2) satisfies the axioms of an asymmetric norm on the cone of all bounded linear functionals on X X XXX (see [2]).
Observe that
f ( x ) f | x | , x X f ( x ) f | x | , x X f(x) <= ||f|*||x|,quad x in Xf(x) \leq\|f|\cdot \| x|, \quad x \in Xf(x)f|x|,xX
and, since f ( x ) f | x | f ( x ) f | x | f(-x) <= ||f|*||-x|f(-x) \leq\|f|\cdot \|-x|f(x)f|x|, one obtains the inequalities
f | x | f ( x ) f | x | , x X . f | x | f ( x ) f | x | , x X . -||f|*||-x| <= f(x) <= ||f|*||x|,quad x in X.-\|f|\cdot\|-x|\leq f(x) \leq\|f|\cdot \| x|, \quad x \in X .f|x|f(x)f|x|,xX.
The inequality | f ( x ) | f | x | | f ( x ) | f | x | |f(x)| <= ||f|*||x||f(x)| \leq\|f|\cdot \| x||f(x)|f|x| is not true in general, but if we consider the symmetric norm x = max { x | , x | } x = max { x | , x | } ||x||=max{||x|,||-x|}\|x\|=\max \{\|x|, \|-x|\}x=max{x|,x|} on X X XXX, then | f ( x ) | f x , x X | f ( x ) | f x , x X |f(x)| <= ||f∣||x||,x in X|f(x)| \leq\|f \mid\| x \|, x \in X|f(x)|fx,xX. This shows that a bounded linear functional is always continuous with respect to the topology generated by the symmetric norm x = max { x | , x | } x = max { x | , x | } ||x||=max{||x|,||-x|}\|x\|=\max \{\|x|, \|-x|\}x=max{x|,x|} associated to an asymmetric norm ||*∣\| \cdot \mid.
If both f f fff and f f -f-ff are bounded then the linear functional f f fff is continuous with respect to the topology generated by the asymmetric norm.
Consider on R R R\mathbb{R}R the asymmetric norm u ( x ) = x 0 = max { x , 0 } u ( x ) = x 0 = max { x , 0 } u(x)=x vv0=max{x,0}u(x)=x \vee 0=\max \{x, 0\}u(x)=x0=max{x,0} (see [7]). A functional f : ( X , ) ( R , u ) f : ( X , ) ( R , u ) f:(X,||*||)rarr(R,u)f:(X,\|\cdot\|) \rightarrow(\mathbb{R}, u)f:(X,)(R,u) is continuous in x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X if for every ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 there exists δ > 0 δ > 0 delta > 0\delta>0δ>0 such that for every x X x X x in Xx \in XxX with x x 0 ∣< δ x x 0 ∣< δ ||x-x_(0)∣<delta\| x-x_{0} \mid<\deltaxx0∣<δ we have ( f ( x ) f ( x 0 ) ) 0 < ε f ( x ) f x 0 0 < ε (f(x)-f(x_(0)))vv0 < epsi\left(f(x)-f\left(x_{0}\right)\right) \vee 0<\varepsilon(f(x)f(x0))0<ε.
It is clear that a linear functional f : ( X , ) ( R , u ) f : ( X , ) ( R , u ) f:(X,||*||)rarr(R,u)f:(X,\|\cdot\|) \rightarrow(\mathbb{R}, u)f:(X,)(R,u) is continuous if and only if there exists M > 0 M > 0 M > 0M>0M>0 such that f ( x ) 0 < M x f ( x ) 0 < M x f(x)vv0 < M||x∣f(x) \vee 0<M \| x \midf(x)0<Mx.
According to [7], the set
(3) X = { f : ( X , ) ( R , u ) , f linear continuous } (3) X = { f : ( X , ) ( R , u ) , f  linear continuous  } {:(3)X^(**)={f:(X","||*||)rarr(R","u)","f" linear continuous "}:}\begin{equation*} X^{*}=\{f:(X,\|\cdot\|) \rightarrow(\mathbb{R}, u), f \text { linear continuous }\} \tag{3} \end{equation*}(3)X={f:(X,)(R,u),f linear continuous }
is called the asymmetric dual of the space with asymmetric norm ( X , X , X,||*||X,\|\cdot\|X, ).
If x = max { x | , x | } x = max { x | , x | } ||x||=max{||x|,||-x|}\|x\|=\max \{\|x|, \|-x|\}x=max{x|,x|} is the norm generated by ||*∣\| \cdot \mid on X X XXX and R R R\mathbb{R}R is equipped with the usual absolute-value norm | | | | |*||\cdot|||, then the set
(4) X s = { f : ( X , ) ( R , | | ) , f linear continuous } (4) X s = { f : ( X , ) ( R , | | ) , f  linear continuous  } {:(4)X^(**s)={f:(X","||*||)rarr(R","|*|)","f" linear continuous "}:}\begin{equation*} X^{* s}=\{f:(X,\|\cdot\|) \rightarrow(\mathbb{R},|\cdot|), f \text { linear continuous }\} \tag{4} \end{equation*}(4)Xs={f:(X,)(R,||),f linear continuous }
is the (symmetric) dual of ( X , X , X,||*||X,\|\cdot\|X, ). In other words, X s X s X^(**s)X^{* s}Xs is the usual topological algebraic dual of the normed space ( X , ) ( X , ) (X,||*||)(X,\|\cdot\|)(X,), where x = max { x | , x | } x = max { x | , x | } ||x||=max{||x|,||-x|}\|x\|=\max \{\|x|, \|-x|\}x=max{x|,x|}.
Observe that X X X^(**)X^{*}X is a cone in the linear space X s X s X^(**s)X^{* s}Xs.
Equip the linear space X s X s X^(**s)X^{* s}Xs with the extended asymmetric norm
f | s = sup { f ( x ) : x ∣≤ 1 } f s = sup { f ( x ) : x ∣≤ 1 } ||f|^(**s)=s u p{f(x):||x∣≤1}\|\left. f\right|^{* s}=\sup \{f(x): \| x \mid \leq 1\}f|s=sup{f(x):x∣≤1}
whose restriction to the asymmetric dual X X X^(**)X^{*}X is
f | = sup { f ( x ) 0 : x ∣≤ 1 } . f = sup { f ( x ) 0 : x ∣≤ 1 } . ||f|^(**)=s u p{f(x)vv0:||x∣≤1}.\|\left. f\right|^{*}=\sup \{f(x) \vee 0: \| x \mid \leq 1\} .f|=sup{f(x)0:x∣≤1}.
It is important to remark the fact that a linear functional f f fff belongs to X X X^(**)X^{*}X if and only if it is an upper semicontinuous linear functional on ( X , X , X,||*||X,\|\cdot\|X, ), and that X = { f X s : f | s < + } X = f X s : f s < + X^(**)={f inX^(**s):||f|^(**s) < +oo}X^{*}=\left\{f \in X^{* s}: \|\left. f\right|^{* s}<+\infty\right\}X={fXs:f|s<+} (see [7]).
Let ( Y , ) ( Y , ) (Y,||*||)(Y,\|\cdot\|)(Y,) be a subspace of the space with asymmetric norm ( X , X , X,||*||X,\|\cdot\|X, ), and let Y Y Y^(**)Y^{*}Y and Y s Y s Y^(**s)Y^{* s}Ys be the dual cone and the (symmetric) dual of Y Y YYY, respectively.
The following Hahn-Banach type theorem holds:
Theorem 1. Let ( X , X , X,||*||X,\|\cdot\|X, ) be a real space with asymmetric norm and ( Y , Y , Y,||*||Y,\|\cdot\|Y, ) a subspace of it. Then for every f Y f Y f inY^(**)f \in Y^{*}fY there exists F X F X F inX^(**)F \in X^{*}FX such that
F | Y = f and F | = f | . F Y = f  and  F = f . F|_(Y)=f quad" and " quad||F|^(**)=||f|^(**).\left.F\right|_{Y}=f \quad \text { and }\left.\quad\left\|\left.F\right|^{*}=\right\| f\right|^{*} .F|Y=f and F|=f|.
Proof. For f Y f Y f inY^(**)f \in Y^{*}fY let p : X R p : X R p:X rarrRp: X \rightarrow \mathbb{R}p:XR be defined by p ( x ) = f | x , x X p ( x ) = f x , x X p(x)=||f|^(**)*||x∣,x in Xp(x)=\left\|\left.f\right|^{*} \cdot\right\| x \mid, x \in Xp(x)=f|x,xX.
The functional p p ppp is convex, positively homogeneous and f ( y ) f | y f ( y ) f y f(y) <= ||f|^(**)*||y∣f(y) \leq\left\|\left.f\right|^{*} \cdot\right\| y \midf(y)f|y, for every y Y y Y y in Yy \in YyY. By the Hahn-Banach extension theorem ([8, p. 484]) there exists a linear functional F : X R F : X R F:X rarrRF: X \rightarrow \mathbb{R}F:XR such that F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f and F ( x ) f | x F ( x ) f x F(x) <= ||f|^(**)||x∣F(x) \leq\left\|\left.f\right|^{*}\right\| x \midF(x)f|x, for every x X x X x in Xx \in XxX. It follows
F | = sup { F ( x ) 0 : x ∣≤ 1 } f | . F = sup { F ( x ) 0 : x ∣≤ 1 } f . ||F|^(**)=s u p{F(x)vv0:||x∣≤1} <= ||f|^(**).\left.\left\|\left.F\right|^{*}=\sup \{F(x) \vee 0: \| x \mid \leq 1\} \leq\right\| f\right|^{*} .F|=sup{F(x)0:x∣≤1}f|.
On the other hand
F | = sup { F ( x ) 0 : x ∣≤ 1 , x X } sup { F ( y ) 0 : y ∣≤ 1 , y Y } = sup { f ( y ) 0 : y ∣≤ 1 , y Y } = f | , F = sup { F ( x ) 0 : x ∣≤ 1 , x X } sup { F ( y ) 0 : y ∣≤ 1 , y Y } = sup { f ( y ) 0 : y ∣≤ 1 , y Y } = f , {:[||F|^(**)=s u p{F(x)vv0:||x∣≤1","x in X}],[ >= s u p{F(y)vv0:||y∣≤1","y in Y}],[=s u p{f(y)vv0:||y∣≤1","y in Y}],[=||f|^(**)","]:}\begin{aligned} \|\left. F\right|^{*} & =\sup \{F(x) \vee 0: \| x \mid \leq 1, x \in X\} \\ & \geq \sup \{F(y) \vee 0: \| y \mid \leq 1, y \in Y\} \\ & =\sup \{f(y) \vee 0: \| y \mid \leq 1, y \in Y\} \\ & =\|\left. f\right|^{*}, \end{aligned}F|=sup{F(x)0:x∣≤1,xX}sup{F(y)0:y∣≤1,yY}=sup{f(y)0:y∣≤1,yY}=f|,
showing that F = f | F = f ||F||^(**)=||f|^(**)\|F\|^{*}=\|\left. f\right|^{*}F=f|.
For f Y f Y f inY^(**)f \in Y^{*}fY denote by
E ( f ) = { F X : F | Y = f and F | = f | } E ( f ) = F X : F Y = f  and  F = f E(f)={F inX^(**):F|_(Y)=f" and "||F|^(**)=||f|^(**)}\mathcal{E}(f)=\left\{F \in X^{*}:\left.F\right|_{Y}=f \text { and }\left.\left\|\left.F\right|^{*}=\right\| f\right|^{*}\right\}E(f)={FX:F|Y=f and F|=f|}
the set of all extensions that preserve the asymmetric norm.
By Theorem 1, the set E ( f ) E ( f ) E(f)\mathcal{E}(f)E(f) is always nonempty.
The problem of finding necessary or/and sufficient conditions in order that every f Y f Y f inY^(**)f \in Y^{*}fY have a unique norm preserving extension is closely related to a best approximation problem in the space X s X s X^(**s)X^{* s}Xs equipped with the asymmetric norm F | s = sup { F ( x ) : x ∣≤ 1 } F s = sup { F ( x ) : x ∣≤ 1 } ||F|^(**s)=s u p{F(x):||x∣≤1}\|\left. F\right|^{* s}=\sup \{F(x): \| x \mid \leq 1\}F|s=sup{F(x):x∣≤1}.
Concerning the following notions, in the case of usual spaces, one can consult Singer's book [16].
Let ( Y , ) ( Y , ) (Y,||*||)(Y,\|\cdot\|)(Y,) be subspace of ( X , ) ( X , ) (X,||*||)(X,\|\cdot\|)(X,) and let
Y = { G X s : G | Y = 0 } Y = G X s : G Y = 0 Y^(_|_)={G inX^(**s):G|_(Y)=0}Y^{\perp}=\left\{G \in X^{* s}:\left.G\right|_{Y}=0\right\}Y={GXs:G|Y=0}
the annihilator of Y Y YYY in the space ( X s , | s X s , s X^(**s),||*|^(**s)X^{* s}, \|\left.\cdot\right|^{* s}Xs,|s ).
For F X s F X s F inX^(**s)F \in X^{* s}FXs, an element G 0 Y G 0 Y G_(0)inY^(_|_)G_{0} \in Y^{\perp}G0Y is called a best approximation element for F F FFF in Y Y Y^(_|_)Y^{\perp}Y if
F G 0 s = inf { F g | s : G Y } = d ( F , Y ) F G 0 s = inf F g s : G Y = d F , Y ||F-G_(0)||^(**s)=i n f{||F-g|^(**s):G inY^(_|_)}=d(F,Y^(_|_))\left\|F-G_{0}\right\|^{* s}=\inf \left\{\| F-\left.g\right|^{* s}: G \in Y^{\perp}\right\}=d\left(F, Y^{\perp}\right)FG0s=inf{Fg|s:GY}=d(F,Y)
The set of all best approximation elements for F F FFF in Y Y Y^(_|_)Y^{\perp}Y is denoted by P Y ( F ) P Y ( F ) P_(Y^(_|_))(F)P_{Y^{\perp}}(F)PY(F). If P Y ( F ) P Y ( F ) P_(Y^(_|_))(F)!=O/P_{Y^{\perp}}(F) \neq \emptysetPY(F) for every F X s F X s F inX^(**s)F \in X^{* s}FXs one says that Y Y Y^(_|_)Y^{\perp}Y is proximinal, and if card P Y ( F ) = 1 card P Y ( F ) = 1 cardP_(Y^(_|_))(F)=1\operatorname{card} P_{Y^{\perp}}(F)=1cardPY(F)=1 for every F X s F X s F inX^(**s)F \in X^{* s}FXs, then one says that Y Y Y^(_|_)Y^{\perp}Y is Chebyshevian.
Theorem 2. Let ( X , X , X,||*||X,\|\cdot\|X, ) be a space with asymmetric norm and ( Y , Y , Y,||*||Y,\|\cdot\|Y, ) a subspace of it. Then
a) The annihilator Y Y Y^(_|_)Y^{\perp}Y of Y Y YYY is a proximinal subspace of X s X s X^(**s)X^{* s}Xs and, for every F X F X F inX^(**)F \in X^{*}FX we have
d ( F , Y ) = F | Y | d F , Y = F Y d(F,Y^(_|_))=||F|_(Y)|^(**)d\left(F, Y^{\perp}\right)=\|\left.\left. F\right|_{Y}\right|^{*}d(F,Y)=F|Y|
b) An element G Y G Y G inY^(_|_)G \in Y^{\perp}GY is in P Y ( F ) P Y ( F ) P_(Y^(_|_))(F)P_{Y^{\perp}}(F)PY(F) if and only if G = F H G = F H G=F-HG=F-HG=FH for some H E ( F | Y ) H E F Y H inE(F|_(Y))H \in \mathcal{E}\left(\left.F\right|_{Y}\right)HE(F|Y), i.e.,
P Y ( F ) = F E ( F | Y ) . P Y ( F ) = F E F Y . P_(Y^(_|_))(F)=F-E(F|_(Y)).P_{Y^{\perp}}(F)=F-\mathcal{E}\left(\left.F\right|_{Y}\right) .PY(F)=FE(F|Y).
c) The subspace Y Y Y^(_|_)Y^{\perp}Y is Chebyshevian in X s X s X^(**s)X^{* s}Xs if and only if every functional f Y f Y f inY^(**)f \in Y^{*}fY has a unique norm preserving extension in X s X s X^(**s)X^{* s}Xs.
Proof. a) Let F X F X F inX^(**)F \in X^{*}FX. Then F | Y Y F Y Y F|_(Y)inY^(**)\left.F\right|_{Y} \in Y^{*}F|YY and, by Theorem 1, E ( F | Y ) E F Y E(F|_(Y))!=O/\mathcal{E}\left(\left.F\right|_{Y}\right) \neq \emptysetE(F|Y). If H E ( F | Y ) H E F Y H inE(F|_(Y))H \in \mathcal{E}\left(\left.F\right|_{Y}\right)HE(F|Y) then
F | Y = H | Y and F | Y | = H | , F Y = H Y  and  F Y = H , F|_(Y)=H|_(Y)quad" and " quad||F|_(Y)|^(**)=||H|^(**),\left.F\right|_{Y}=\left.H\right|_{Y} \quad \text { and }\left.\quad\left\|\left.\left.F\right|_{Y}\right|^{*}=\right\| H\right|^{*},F|Y=H|Y and F|Y|=H|,
so that F H Y F H Y F-H inY^(_|_)F-H \in Y^{\perp}FHY. We have
F | Y | = H | = H | s = F ( F H ) | s d ( F , Y ) F Y = H = H s = F ( F H ) s d F , Y ||F|_(Y)|^(**)=||H|^(**)=||H|^(**s)=||F-(F-H)|^(**s) >= d(F,Y^(_|_))\left.\left\|\left.\left.F\right|_{Y}\right|^{*}=\right\| H\right|^{*}=\left\|\left.H\right|^{* s}=\right\| F-\left.(F-H)\right|^{* s} \geq d\left(F, Y^{\perp}\right)F|Y|=H|=H|s=F(FH)|sd(F,Y)
and, for any G Y G Y G inY^(_|_)G \in Y^{\perp}GY,
F | Y | = F | Y G | Y | F G | s . F Y = F Y G Y F G s . ||F|_(Y)|^(**)=||F|_(Y)-G|_(Y)|^(**) <= ||F-G|^(**s).\left.\left\|\left.\left.F\right|_{Y}\right|^{*}=\right\| F\right|_{Y}-\left.\left.G\right|_{Y}\right|^{*} \leq \| F-\left.G\right|^{* s} .F|Y|=F|YG|Y|FG|s.
Taking the infimum with respect to G Y G Y G inY^(_|_)G \in Y^{\perp}GY we get
F | Y | d ( F , Y ) F Y d F , Y ||F|_(Y)|^(**) <= d(F,Y^(_|_))\|\left.\left. F\right|_{Y}\right|^{*} \leq d\left(F, Y^{\perp}\right)F|Y|d(F,Y)
It follows that d ( F , Y ) = F | Y | d F , Y = F Y d(F,Y^(_|_))=||F|_(Y)|^(**)d\left(F, Y^{\perp}\right)=\|\left.\left. F\right|_{Y}\right|^{*}d(F,Y)=F|Y|.
b) If G P Y ( F ) G P Y ( F ) G inP_(Y^(_|_))(F)G \in P_{Y^{\perp}}(F)GPY(F) then
F G | s = F | Y | F G s = F Y ||F-G|^(**s)=||F|_(Y)|^(**)\left.\left.\left\|F-\left.G\right|^{* s}=\right\| F\right|_{Y}\right|^{*}FG|s=F|Y|
and
( F G ) | Y = F | Y ( F G ) Y = F Y (F-G)|_(Y)=F|_(Y)\left.(F-G)\right|_{Y}=\left.F\right|_{Y}(FG)|Y=F|Y
which shows that F G E ( F | Y ) F G E F Y F-G inE(F|_(Y))F-G \in \mathcal{E}\left(\left.F\right|_{Y}\right)FGE(F|Y). The conclusion holds with H = F G H = F G H=F-GH=F-GH=FG.
c) Follows from b).
Remark. 1 1 1^(@)1^{\circ}1 Let X X X^(**)X^{*}X be the usual topological algebraic dual of the normed space ( X , X , X,||*||X,\|\cdot\|X, ), and Y Y Y^(**)Y^{*}Y the topological algebraic dual of ( Y , Y , Y,||*||Y,\|\cdot\|Y, ), where Y Y YYY is a subspace of X X XXX. R. R. Phelps [14] showed that Y Y Y^(_|_)Y^{\perp}Y (the annihilator of Y Y YYY in X ) X {:X^(**))\left.X^{*}\right)X) is Chebyshevian if and only if every f Y f Y f inY^(**)f \in Y^{*}fY has a unique norm-preserving extension F X F X F inX^(**)F \in X^{*}FX.
2 2 2^(@)2^{\circ}2 Some Phelps type duality results and applications can be found in [3], and in the bibliography quoted there.

REFERENCES

[1] Alegre, C., Ferrer, J. and Gregori, V., On the Hahn-Banach theorem in certain linear quasi-uniform structures, Acta Math. Hungar, 82, pp. 315-320, 1999.
[2] Borodin, P. A., The Banach-Mazur Theorem for spaces with asymmetric norm and its applications in convex analysis, Mathematical Notes, 69, no. 3, pp. 298-305, 2001.
[3] Cobzaş, S., Phelps type duality results in best approximation, Rev. Anal. Numér. Théor. Approx., 31, no. 1, pp. 29-43, 2002. /_\\triangle
[4] Dolzhenko, E. P. and Sevast'yanov, E. A., Approximation with sign-sensitive weights, Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 62, no. 6, pp. 59-102, 1998 and 63, no. 3, pp. 77-118, 1999.
[5] Ferrer, J., Gregori, V. and Alegre, C., Quasi-uniform structures in linear lattices, Rocky Mountain J. Math., 23, pp. 877-884, 1993.
[6] Garćia-Raffi, L. M., Romaguera, S. and Sanchez Pérez, E. A., Extension of asymmetric norms to linear spaces, Rend. Istit. Mat. Trieste, XXXIII, pp. 113-125, 2001.
[7] Garćia-Raffi, L. M., Romaguera S. and Sánchez-Pérez, E. A., The dual space of an asymmetric normed linear space, Quaestiones Mathematicae, 26, pp. 83-96, 2003.
[8] Krein, M. G. and Nudel'man, A. A., The Markov Moment Problem and Extremum Problems, Nauka, Moscow, 1973 (in Russian).
[9] Kopperman, R. D., All topologies come from generalized metrics, Amer. Math. Monthly, 95, pp. 89-97, 1988.
[10] McShane, E. J., Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 847842, 1934.
[11] Mustăţa, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., 30, no. 1, pp. 61-67, 2001. ©
[12] Mustăţa, C., Extensions of convex semi-Lipschitz functions on quasi-metric linear spaces, Séminaire de la Théorie de la Meileure Approximation Convexité et Optimization, Cluj-Napoca, le 29 novembre, pp. 85-92, 2001.
[13] Mustăţa, C., A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiint. Univ. Baia-Mare, Ser. B, XVIII, no. 2, pp. 275-280, 2002.
[14] Phelps, R. R., Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc., 95, pp. 238-255, 1960.
[15] Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292-301, 2000.
[16] Singer, I., Best approximation in normed linear spaces by elements of linear subspaces, Ed. Acad. RSR, Bucharest, 1967 (in Romanian); English Translation, Springer, Berlin, 1970.
Received by the editors: February 3, 2003.

  1. *"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: cmustata@ictp.acad.ro, cmustata2001@yahoo.com.
2003

Related Posts