On the uniqueness of extension and unique best approximation in the dual of an asymmetric normed linear space

Abstract


A well known result of R. R. Phelps (1960) asserts that in order that every linear continuous functional, defined on a subspace \(Y\) of a real normed space \(X\), have a unique norm preserving extension it is necessary and sufficient that its annihilator \(Y^{\perp}\) be a Chebyshevian subspace of \(X\ast\). The aim of this note is to show that this result holds also in the case of spaces with asymmetric norm.

Authors

Costica Mustăţa
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academ, Romania

Keywords

Asymmetric normed spaces; extensions preserving asymmetricnorm; best approximation

Paper coordinates

C. Mustăţa, On the uniqueness of extension and unique best approximation in the dual of an asymmetric normed linear space, Rev. Anal. Numer. Theor. Approx. 32 (2003) no. 2, 187-192.

PDF

About this paper

Journal

Revue d’Analyse Numerique et de Theorie de l’Approximation

Publisher Name

Publising Romanian Academy

DOI
Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

[1] Alegre, C., Ferrer, J.andGregori, V.,On the Hahn–Banach theorem in certainlinear quasi-uniform structures,Acta Math. Hungar,82, pp. 315–320, 1999.
[2] Borodin, P. A.,The Banach–Mazur Theorem for spaces with asymmetric norm andits applications in convex analysis, Mathematical Notes,69, no. 3, pp. 298–305, 2001.
[3] Cobzas S.,Phelps type duality results in best approximation,Rev. Anal. Numer.Theor. Approx.,31, no. 1, pp. 29–43, 2002.
[4] Dolzhenko, E. P.andSevast’yanov, E. A.,Approximation with sign-sensitiveweights, Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 62, no. 6,pp. 59–102, 1998 and63, no. 3, pp. 77–118, 1999.
[5] Ferrer, J., Gregori, V.andAlegre, C.,Quasi-uniform structures in linear lattices,Rocky Mountain J. Math.,23, pp. 877–884, 1993.
[6] Garcia-Raffi, L. M., Romaguera, S.and Sanchez Perez, E. A.,Extension ofasymmetric norms to linear spaces, Rend. Istit. Mat. Trieste,XXXIII, pp. 113–125,2001.
[7] Garcia-Raffi, L. M., Romaguera S.and Sanchez-Perez, E. A.,The dual space ofan asymmetric normed linear space,Quaestiones Mathematicae,26, pp. 83–96, 2003.
[8] Krein, M. G.and Nudel’man, A. A.,The Markov Moment Problem and ExtremumProblems, Nauka, Moscow, 1973 (in Russian).
[9] Kopperman, R. D.,All topologies come from generalized metrics, Amer. Math.Monthly,95, pp. 89–97, 1988.
[10] McShane, E. J.,Extension of range of functions, Bull. Amer. Math. Soc.,40, pp. 847–842, 1934.
[11] Mustata, C.,Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev.Anal. Numer. Theor. Approx.,30, no. 1, pp. 61–67, 2001.
[12] Mustata, C.,Extensions of convex semi-Lipschitz functions on quasi-metric linearspaces, Seminaire de la Theorie de la Meileure Approximation Convexite et Optimiza-tion, Cluj-Napoca, le 29 novembre, pp. 85–92, 2001.
[13] Mustata, C.,A Phelps type theorem for spaces with asymmetric norms, Bul. Stiint.Univ. Baia-Mare, Ser. B,XVIII, no. 2, pp. 275–280, 2002.
[14] Phelps, R. R.,Uniqueness of Hahn–Banach extension and unique best approximation,Trans. Amer. Math. Soc.,95, pp. 238–255, 1960.
[15] Romaguera, S.and Sanchis, M.,Semi-Lipschitz functions and best approximation inquasi-metric spaces, J. Approx. Theory,103, pp. 292–301, 2000.
[16] Singer, I.,Best approximation in normed linear spaces by elements of linear subspaces,Ed. Acad. RSR, Bucharest, 1967 (in Romanian); English Translation, Springer, Berlin,1970

2003

Related Posts