Path decomposition of discrete effective diffusion coefficient

Abstract

Authors

C. Vamoș
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

N. Suciu
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

H. Vereecken

J. Vanderborght

O. Nitzsche

Keywords

Cite this paper as:

C. Vamoş, N. Suciu, H. Vereecken, J. Vanderborght and O. Nitzsche, Path decomposition of discrete effective diffusion coefficient, Internal Report ICG-IV.00501, Forschungszentrum Jülich, November 2001

PDF

About this paper

Journal
Forschungszentrum Jülich / Internal Report ICG-IV 00501
Publisher Name
Forschungszentrum Jülich GmbH
DOI
Print ISSN
Online ISSN

MR

?

ZBL

?

[1] Ames, W. F., Numerical Methods for Partial Differential Equations, 2nd ed., Academic Press, New York, 1977.

[2] Arnold, V. I., Ordinary differential equations (in Romanian), Ed. Ştiinţifică şi Enciclopedică, Bucureşti, 1978.

[3] Attinger, S., M. Dentz, H. Kinzelbach and W. Kinzelbach, Temporal behavior of a solute cloud in a chemical heterogeneous porous medium, J. Fluid Mech. 386, 77, 1999.

[4] Avellaneda, M., S. Torquato and I. C. Kim, Diffusion and Geometric Effects in Passive Advection by Random Arrays of Vortices, Phys. Fluids A 3 (8), 1991.

[5] Avellaneda, M., F. Elliot, Jr. and C. Apelian, Trapping, Percolation and Anomalous Diffusion of Particles in a Two-Dimensional Random Field, J. Stat. Phys., 72, 5/6, 1227-1304, 1993.

[6] Bellin, A., P. Salandin and A. Rinaldo, Simulation of Dispersion in Heterogeneous Porous Formations: Statistics, First-Order Theories, Convergence of Computations, Water Resour. Res. 28(9), 2211, 1992.

[7] Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press, 1959.

[8] Chorin, A. J., Vortex Sheet Approximation of Boundary Layers, J. Comput. Phys. 27, 428, 1978.

[9] Crank, J., The Mathematics of Diffusion, Oxford Univ. Press, 1975.

[10] Doob, J. L., Stochastic Processes, John Wiley & Sons, London, 1953.

[11] Dagan, G., Flow and Transport in Porous Formations, Springer, 1989.

[12] Dagan, G. and A. Fiori, The influence of pore-scale dispersion on concentration statistical moments in transport through heterogeneous aquifers, Water Resour. Res., 33, 1595-1605, 1997.

[13] Evans, D. J. and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London, 1990.

[14] Fried, J. J., Groundwater Pollution, Elsevier, New York, 1975.

[15] Gardiner, C. W., Handbook of Stochastic Methods (for Physics, Chemistry and Natural Science), Springer, New York, 1983.

[16] Georgescu, A., Asymptotic Treatment of Differential Equations, Applied Mathematics and Mathematical Computation, 9, Chapman & Hall, London, 1995.

[17] Ghoniem, A. F. and F. S. Sherman, Grid-Free Simulation of Diffusion Using Random Walk Methods, J. Comput. Phys. 61, 1, 1985.

[18] Gelhar, L. and C. Axness, Three-dimensional Stochastic Analysis of Macrodispersion in Aquifers, Water Resour. Res. 19, 1, 161-180, 1983.

[19] Godunov, S. K. and V. S. Ryabenkii, Difference Schemes: An Introduction to the Underlying Theory, North Holland, Amsterdam, 1987.

[20] Honkonen, G., Stochastic Processes with Stable Distributions in Random Environments, Phys. Rev. E 53, 1, 327-331, 1996.

[21] Horsthemke, W. and R. Lefever, Noise-Induced Transitions. Theory and Applications in Physics, Chemistry and Biology, Springer, Berlin, 1984.

[22] Iosifescu, M. and P. Tăutu, Stochastic Processes and Applications in Biology and Medicine, I Theory, Editura Academiei Bucureşti and Springer, Bucureşti, 1973.

[23] Isichenko, M. B., Percolation, Statistical Topography, and Transport in Random Media, Rev. of Modern Phys. 64, 961, 1992.

[24] Kapoor, C. and L. W. Gelhar, Transport in three-dimensionallity heterogeneous aquifers 1. Dynamics of concentration fluctuations, Water Resour. Res. 30(6), 1775, 1994a.

[25] Kapoor, C. and L. W. Gelhar, Transport in three-dimensionallity heterogeneous aquifers 2. Prediction and observations of concentration fluctuations, Water Resour. Res. 30(6), 1789, 1994b.

[26] Lasota, A. and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Springer, New York, 1985; second edition: Lasota, A. and M. C. Mackey, Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics, Springer, New York, 1994.

[27] Lundgren, T. S. and Y. B. Pointin, Turbulent Self-Diffusion, Phys. Fluids, 19 (3), 355-358, 1976.

[28] Mackey, M. C., The Dynamic Origin of Increasing Entropy, Rev. of Modern Phys., 61, 4, 981-1016, 1989.

[29] Matheron, G. and G. de Marsily, Is Transport in Porous Media Always Diffusive?, Water Resour. Res., 16, 901-917, 1980.

[30] Moltyamer, G. L., M. H. Klukas, C. A. Willis and R. W. D. Killey, Numerical Simulations of Twin Lake Natural-Gradient Tracer Tests: A Comparison of Methods, Water Resour. Res. 29(10), 3443, 1993.

[31] Monin, A. S. and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, MIT Press, Cambridge, MA, 1971.

[32] Papoulis, A., Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York, 1991.

[33] Reuss, J.-D. and J. H. Misguish, Low Frequency Percolation Scaling for Particle Diffusion in Electrostatic Turbulence, Phys. Rev. E 54, 2, 1857-1869, 1996.

[34] Romanof, N., Applications of the Random Processes Theory to the Turbulence Theory, Meteorology and Hydrology, 48, 1, Bucureşti-România, 1988.

[35] Roth, K. and K. Hammel, Transport of conservative chemical through an unsaturated two-dimensional Miller-similar medium with steady state flow, Water Resour. Res. 32(6), 1653, 1996.

[36] Saffman, P. G., Application of the Wiener-Hermite Expansion to the Diffusion of a Passive Scalar in a Homogeneous Turbulent flow, Phys. Fluids 12, 9, 1786-1798, 1969.

[37] Salandin, P. and V. Fiorotto, Solute transport in highly heterogeneous aquifers, Water Resour. Res. 34 (5), 949, 1998.

[38] Schwarze, H., U. Jaekel and H. Vereecken, Estimation of Macrodispersivity by Different Approximation Methods for Flow and Transport in Randomly Heterogeneous Media, Transport in Porous Media 43, 265, 2001.

[39] Schwarze, H., Transport gelöster Stoffe in porösen Medien: Störungstheoretische Ansätze und numerische Simulationen, PhD thesis, Berichte des Forschungszentrum Jülich, Jül-3772, 1999.

[40] Shapiro, A. M. and V. D. Cvetkovic, Stochastic Analysis of Solute Travel Time in Heterogeneous Porous Media, Water Resour. Res. 24, 10, 1711-1718, 1988.

[41] Suciu, N., Mathematical background for diffusion processes in natural porous media, Forschungszentrum Jülich/ICG-4, Internal Report No. 501800, 2000.

[42] Suciu, N., On the connection between the microscopic and macroscopic modeling of the thermodynamic processes (in Romanian), Ed. Univ. Piteşti, 2001.

[43] Sun, Ne-Z., Mathematical Modeling in Groundwater Pollution, Springer, New York, 1996.

[44] Taylor, G. I., Diffusion by Continuous Movements, Proc. London Math. Soc., 2, 20, 196-212, 1921.

[45] Tompson, A. F. B. and L. W. Gelhar, Numerical Simulation of Solute Transport in Three-Dimensional, Randomly Heterogeneous Porous Media, Water Resour. Res. 26(10), 2541, 1990.

[46] Tompson, A. F. B. and R. B. Knapp, Reactive Geochemical Transport Problems in Nuclear Waste Analyses, Preprint UCRL-00552, Lawrence Livermore National Laboratory, Livermore, 1989.

[47] Tompson, A. F. B., R. D. Falgout, S. G. Smith, W. J. Bosl and S. F. Asby, Analysis of subsurface contaminant migration and remediation using high performance computing, Advances in Water Resources 22(3), 203, 1998.

[48] Vamoş, C., N. Suciu, H. Vereecken, O. Nitzsche and H. Hardelauf, Global Random Walk Simulations of Diffusion, pp. 343-354 in Scientific Computing, Validated Numerics, Interval Methods, Edited by Krӓmer and Wolff von Gudenberg, Kluwer Academic/Plenum Publishers, New York, 2001a.

[49] Vamoş, C., N. Suciu and H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, submitted to Journal of Computational Physics, 2001b.

[50] Vanderborght, J., D. Mallants and J. Feyen, Solute transport in a heterogeneous soil for boundary and initial conditions: Evaluation of first-order approximations, Water Resour. Res. 34, 12, 3255-3270, 1989.

[51] Vanderborght, J. and H. Vereecken, Analyses of locally measured bromide breakthrough curves from a natural gradient tracer experiment at Krauthausen, J. of Contaminant Hydr., 48, 23-43, 2001.

[52] Vanderborght, J., Concentration variance and spatial covariance in second order stationary heterogeneous conductivity fields, Water Resour. Res. 37, 7, 1893-1912, 2001.

[53] van Kampen, N. G., Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1981.

[54] Wentzell, A. D., A Course in the Theory of Stochastic Processes, McGraw-Hill International Book Company, New York, 1981.

[55] Zhang, R., K. Huang and M. T. van Genuchten, An Efficient Eulerian-Lagrangian Method for Solving Solute Transport Problems in Steady and Transient Flow Fields, Water Resour. Res. 29 (12), 4131, 1993.

soon

2001

Related Posts