Title: PROFESSOR DR.   

FAMILY NAME: MOCANU       

Middle name T.   

FIRST NAME: PETRU         

 PLACE OF BIRTH: BRAILA-ROMANIA  YEAR: 1931  MONTH:  JUNE,   DAY:  1th        

EMPLOYMENT, TRADE, PROFESSION: PROFESSOR OF MATHEMATICS

CITIZENSHIP: ROMANIAN                   

NATIONALITY: ROMANIAN                        

QUALIFICATION: FACULTY OF MATHEMATICS, UNIVERSITY OF CLUJ, 1950-1953

HIGHER STUDIES: FACULTY OF MATHEMATICS, UNIVERSITY OF CLUJ, 1954-1957

Ph.D: UNIVERSITY OF CLUJ, 1959, SCIENTIFIC SUPERVISOR: ACAD. GEORGE CALUGAREANU      

 

 MILESTONES (CAREER): 

ACADEMIC APPOINTMENTS:

Professor,Faculty of Mathematics and Computer Science,Babes-Bolyai University,Cluj-Napoca,since 1953.
1953-1957, Assistant Professor
1957-1962, Lecturer
1962-1970, Associate Professor
1966-1967,Visiting Professor,Conakry, Guinea
1970-present, Full Professor
1992, fall semester,Visiting Professor, Bowling Green State University, Ohio,U.S.A.
1992, corresponding member of Romanian Academy.

ADMINISTRATIVE APPOINTMENTS:    

Dean of the Faculty of Mathematics, 1968-1976 and 1984-1987
Head of the Chair of Function Theory, 1976-1984 and 1990-2000
Vice-Rector of Babes-Bolyai University, 1990-1992
President of the Romanian Mathematical Society, 1996-2003.

EDITORIAL POSITIONS:

Chief Editor, Mathematica(Cluj)
Editorial Board: Studia Univ.Babes-Bolyai,Math. and Bulletin de Mathematiques, S.S.M.R.
Editorial Board:Proc. Ro. Acad. Series A
Editorial Board:Analele Univ.Oradea

RESEARCH SPECIALITY:  Complex Analysis. Geometric Function Theory.

Ph.D. SUPERVISOR:

Since  1972 .More than 30 students had taken Ph.D.degrees :

  1. N.Pascu, Contribuţii la teoria reprezentărilor conforme ,1979
  2. D.Duca, Programare matematică in domeniul complex, 1981
  3. Gr.St.Salagean, Probleme extremale in teoria geometrică a funcţiilor analitice, 1982
  4. M.Iovanov, Probleme extremale in clase de funcţii analitice, 1983
  5. D.Blezu, Aspecte constructive in teoria geometrică a funcţiilor analitice, 1984
  6. P.Rotaru, Probleme extremale relative la clase de funcţii univalente, 1985
  7. O.Fekete, Spaţii Hardy de funcţii univalente, 1986
  8. I.Radomir, Metode ale teoriei geometrice a funcţiilor analitice in mecanica fluidelor, 1986
  9. A Zelmer, Contribuţii la studiul axiomatic al unor probleme de matematici şi stiinţelor naturii, 1986
  10. V.Selinger, Studiul unor clase de funcţii univalente, 1988
  11. S.Moldovan, Principiul subordonării in reprezentarea conformă.Aplicaţii, 1989
  12. V.Pescar, Criterii de univalenţă cu aplicaţii in mecanica fluidelor, 1990
  13. T.Bulboacă, Subordonări diferenţiale şi aplicaţii in teoria funcţiilor univalente, 1991
  14. H.Ovesea, Criterii de univalenţă.Aplicaţii, 1993
  15. E.Drăghici, Operatori integrali pe spaţii de funcţii univalente, 1994
  16. E.Popa, Funcţii olomorfe neolonome, 1994
  17. D.Răducanu, Criterii de univalenţă, 1994
  18. G.Kohr, Contribuţii in domeniul teoriei funcţiilor univalente, 1996
  19. M.Kohr, Metode moderne ale analizei complexe si analizei numerice in mecanica fluidelor, 1996
  20. P.Curt, Subordonări diferenţiale, 1996
  21. M.Pap, Subordonări diferenţiale si aplcaţii, 1997
  22. V.Anisiu, Proprietăţi de netezime pentru funcţii convexe, 1997
  23. Gh.Miclaus , Spaţii Hardy şi operatori integrali, 1997
  24. Gh.Oros, Contribuţii la teoria geometrică a funcţiilor, 1998
  25. A.F.Boer, Contribuţii la teoria algebrică a limbajelor formale, 1998
  26. A.Horvath,Complex surface singularities and resolution graphs, 1998
  27. N.Oprea , Funcţii de colinearitate in plane proiective generalizate, 1999
  28. I.Magdas, Contribuţii la teoria funcţiilor uniform stelate si uniform convexe, 1999
  29. N.R.Pascu, Funcţii analitice in semiplan, 2001
  30. D.Breaz, Operatori integrali pe spaţii de funcţii univalente, 2002
  31. R.I.Peter Generalizations of some results from Riemannian geometry to Finsler Geometry, 2002 (in cotutela)
  32. R.Szasz, Tehnici de convexitate,convoluţii şi subordonări diferenţiale în analiza complexă, 2003
  33. A.A.Holhos, Studiul unor clase de funcţii univalente cu ajutorul subordonărilor diferenţiale şi al altor metode,  2004
  34. V.C.Holhos, Relaţia de subordonare in planul complex, 2004
  35. M. Acu, Clase speciale de funcţii uivalente.Consevarea prprietăţilor lor geometrice, 2005
  36. V.Nechita, Contribuţii în teoria funcţiilor univalente, 2007

SEMINAR ACTIVITY:

Chairman of the Seminar on Geometric Function Theory, Department of Mthematics. Babes-Bolyai University
Head of the Romanian School on Univalent Functions.

TEACHING ACTIVITY:

The basic course on Complex Analysis and many other special courses (Univalent Functions, Measure Theory, Hardy Spaces, Differential Subordinations, etc.)

SCIENTIFIC ACTIVITY:

More than 170 papers in the field of Geometric Function Theory (Univalent Functions).
The main  results in:

  • extremal problems in the theory of univalent functions
  • new classes of univalent functions (for example, the class of  alpha-convex functions)
  • integral operators on classes of univalent functions
  • differential subordinations and differential superordinations
  • conditions for diffeomorphism in the complex plane
  • applications of complex analysis in optics (regular refraction).

INVITED TALKS:

Lodz (1966,1976), Lublin (1970), Michigan (1973,1992), Maryland (1973),Stanford (1973), Tampa (1973),Delaware (1973), New-York (1973),Rouen (1990), Hagen (1991,1992,1993,1998,2000,2001,2003,2004,2005,2006,2007) Debrecen (1996),Chişinău (1996), Iowa (1992), Wuerzburg (1998,2000,2001,2002,2003),Dortmund (2000,2002,2006),Nicosia(2004),Istanbul(2007).

MEMBERSHIP:

Member of the Romanian Mathematical Society
Member of the American Mathematical Society

HONORS:

Doctor Honoris Causa, University L. Blaga, Sibiu, Romania (1998)
Doctor Honoris Causa, University of Oradea, Romania (2000)
Honorary Diploma of Babeş-Bolyai University,(2002)
Honorary Diploma of Romanian Mathematical Society, (2006)
Honorary Citizen of  the city Brǎila,( 2007).

COLLABORATORS:

M.O.Reade,S.Miller,E.Zlotkiewicz,Gr.Moldovan,P.Eenigenburg,D.Ripeanu,I.Şerb,H.Al-Amiri, Gr.Sǎlǎgean, M.Iovanov,M.Popovici,V.Selinger,V.Anisiu,X.Xanthopoulos,G.Kohr,M.Kohr,K.C.Chan,J.Gresser,
S.Seubert,D.Coman,Gh.Toader,Gh.Oros,S.Ruscheweyh,S.Gal,R.Fournier,P.Hamburg,N.Negoescu,T.Bulboacǎ.

CITATIONS

The results are used or extended by more than 300 authors in more than 600 papers.

Some of these results are mentioned in the following monographs:

  • G.M.Goluzin, Teoria geometrică a funcţiilor de variabilă complexă (limba rusă),Ed.II,Nauka,Moscova,1966.
  • P.L.Duren, Univalent functions, Springer-Verlag, N.Y. ,1983
  • A.W.Goodman, Univalent functions, Mariner Publ.Co.Inc., Tampa,Florida, 1983.
  • S.D.Bernardi, Bibliography of schlicht functions, Mariner Publ.Co.Inc., Tampa,Florida, 1983
  • S.G.Gal, Introduction to Geometric Function Theory of Hypercomplex Variables, Nova Sci.Publ.,Inc.New York, 2002.
  • Gr.St.Sălăgean, Geometria planului complex, Promedia-Plus,Cluj-Napoca,1997.
  • G.Kohr, P.Liczberski, Univalent Mappings of Several Complex Variables, Cluj Univ.Press, Cluj-Napoca,1998.
  • P.Curt, Capitole speciale de teoria geometrică a funcţiilor de mai multe variabile complexe,Editura Albastră,2001.
  • Gh.Miclăuş, Spaţii Hardy şi operatori integrali, Editura Dacia,Cluj-Napoca, 2001.
  • Gh.Oros, Convexity and Starikeness in Geometric Function Theory,Monographical Booklets in Applied &Computer  Mathematics,Budapest, 2001 .
  • I.Graham,G.Kohr, Geometric Function Theory of One and Higher Dimensions, Marcel Dekker Inc.,New York, 2003.
  • D.Breaz, Operatori integrali pe spaţii de funcţii univalente, Editura Academiei Române, 2004.
  • T.Bulboacă, Differential Subordinations and Superordinations.Recent Results., Casa Cărţii de Ştiinţă ,Cluj-Napoca, 2005.

The class of alpha-convex functions is presented in a special section of the book of Goodman.

In the Bibliography of Bernardi, which is divided in 3 sections, the first section contains 68 topics and the second section (1966-1978) contains new topics started with topic 69, which is devoted to alpha-convex functions.

In Mahematical Reviews (MathSciNet) (12.21.2007)

  • the name Mocanu is mentioned in more than 300 reviews (“Review Text”), 42 in “Title” and more than 600 in “Anywhere”.
  • the concept of “Differential Subordination”, introduced in the paper 63, is mentioned in 181 reviews (Review Text), 169 in “Title” and 280 in “Anywhere”.
  • the concept of “alpha-convex function”, introduced in the paper 19, is mentioned in 89 reviews (Review Text),73 in “Title” and 133 in “Anywhere”.
  • 187 citations by 73 authors in MR Citation Database.(2/5/2008)

Few selections from some papers ,P.H. theses or referees:

  • Some authors consider that concepts like alpha-convex function or differential subordination are wellknown by specialists and they don’t mention in References the papers where these concepts where introduced. For example, in the paper of  D.V.Prokhorov, “Coefficients of holomorphic functions” , Journal  of Mathematical Sciences, vol.106,no.6,2001 ,is mentioned the concept of “alpha-convex or the Mocanu function” ,but the original paper  is not mentioned in References. There are many  such  examples .
  • In the P.H.Thesis  “Some applications of differential subordinations” by S.Ponnusamy (1988): Mocanu defined the following class by means of linear combination of starlikeness and convexity that has occupied wide attention on the recent years”, “a very recent powerful concept called differential subordination initiated
    by Miller and Mocanu”
  • In the P.H. thesis   “Study of some properties of analytic univalent and multivalent functions” by Marzich Ghaedi (2005) is mentioned :“Internationally known scholars like S.Rusheweyh,H.M Srivastava,P.T.MocanuS.Owa,P.L.Duren,et.al.have shown and opened new openings in this field of univalent and multivalent functions through  their  oustanding  research work”.
  • In the P.H thesis  “A study of some classes of analytic functions…” by P.P.Singh (1979) “… the famous trio of devoted research workers Mocanu,Reade and Miller”.
  • In the paper “Non-autonomous differential subordinations ” by S.S.Singh and S.Gupta ,in JIPAM (2003): “Since 1981 ,when a formal study of differential subordination started with a remarkable paper of Miller and Mocanu , several results concerning differential subordination in a sector have been proved”.
  • In the paper “Some Functional Inequalities …”by C.Y.Gao,S.M.Yuan and H.M.Srivastava,in Computer and Mathematics with Applications,49(2005) 1787-1795 :”In our investigation … we shall make use of the following result (which is popularly known as the Miller-Mocanu lemma).
  • In the referee of D.Aharonov ,( Zentralblatt,MATH 0864.30011), on the paper : Mocanu P.T. “A sufficient condition for injectivity in the complex plane”, PU.M.A., 6,231-238(1995): “In this nice paper…”
  • In the referee of F Rönning (MR1944338,2003m:30032) on the paper: Miller,S.S.,Mocanu P.T. “Libera transform of functions with bounded turning”, J.Math.Anal.Appl.276(2002),90-97: ” The authors of this paper are well-known for their work on differential subordination,and they have written a very nice book on this subject”.

HOBBY:  playing violin

Dated, 2008-01-27   

Menu