Programmed motion with homogeneity assumptions

Abstract

We consider the problem : Given a planar region \(T_{orb}\) described by one inequality \(g(x,y)\leq c_{0}\), find the potentials \(V=V(x,y)\) which can generate monoparametric families of orbits \(f(x,y)=c\) (also to be found) lying exclusively in the region \(T_{orb}\). We make assumptions on the homogeneity of both the function \(g(x,y)\) describing the boundary of the region \(T_{orb}\) and of the slope function \(\U{3b3} (x,y)=fy/fx\) of the required family. We show that, under certain conditions, the slope function \(\U{3b3} (x,y)\) can be obtained as the common solution of two algebraic equations. The theoretical results are illustrated by an example.

Authors

George Bozis
Department of Physics, University of Thessaloniki, GR-54006, Greece

Mira-Cristiana Anisiu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Keywords

?

Paper coordinates

G. Bozis, M.-C. Anisiu, Programmed motion with homogeneity assumptions, Proceedings of the International Conference on the Dynamics of Celestial Bodies, 23-26 June 2008, Litohoro-Olympus, Thessaloniki, Greece, Eds. H. Varvoglis and Z. Knezevic, Beograd 2009, 83-87 (ISBN 978-960-243-664-6)

PDF

About this paper

Journal

Publications of the Astronomical Observatory

Publisher Name
DOI
Print ISSN
Online ISSN

0373-3742

google scholar link

[1] Anisiu, M.-C. : 2003, Analysis and Optimization of Differential Systems, eds. V. Barbu et al., Kluwer Academic Publishers, Boston/Dordrecht/London, 13.
[2] Anisiu, M.-C., Bozis, G. : 2000, Inverse Problems 16, 19.
[3] Bozis, G. : 1995, Inverse Problems 11, 687.
[4] Bozis, G. : 1996, Proceedings of the 2nd Hellenic Astronomical Conference, eds. M. E. Kontadakis et al., Thessaloniki, Greece, 587.
[5] Bozis, G., Anisiu, M.-C. : 2001, Rom. Astron. J. 11, 27.
[6] Bozis, G., Ichtiaroglou, S. : 1994, Celest. Mech. Dyn. Astron. 58, 371.

2009-Bozis-Anisiu-ProgrammedLitohoro

PROGRAMMED MOTION WITH HOMOGENEITY ASSUMPTIONS

G. BOZIS 1 1 ^(1){ }^{1}1 and M.-C. ANISIU 2 2 ^(2){ }^{2}2 1 1 ^(1){ }^{1}1 Department of Physics, University of Thessaloniki, GR-54006, GreeceE-mail gbozis@auth.gr 2 2 ^(2){ }^{2}2 T. Popoviciu Institute of Numerical Analysis, Romanian Academy, PO Box 68, 400110 Cluj-Napoca, RomaniaE-mail mira@math.ubbcluj.ro

Abstract

We consider the problem : Given a planar region T orb T orb  T_("orb ")T_{\text {orb }}Torb  described by one inequality g ( x , y ) c 0 g ( x , y ) c 0 g(x,y) <= c_(0)g(x, y) \leq c_{0}g(x,y)c0, find the potentials V = V ( x , y ) V = V ( x , y ) V=V(x,y)V=V(x, y)V=V(x,y) which can generate monoparametric families of orbits f ( x , y ) = c f ( x , y ) = c f(x,y)=cf(x, y)=cf(x,y)=c (also to be found) lying exclusively in the region T orb T orb  T_("orb ")T_{\text {orb }}Torb . We make assumptions on the homogeneity of both the function g ( x , y ) g ( x , y ) g(x,y)g(x, y)g(x,y) describing the boundary of the region T orb T orb  T_("orb ")T_{\text {orb }}Torb  and of the slope function γ ( x , y ) = f y / f x γ ( x , y ) = f y / f x gamma(x,y)=f_(y)//f_(x)\gamma(x, y)=f_{y} / f_{x}γ(x,y)=fy/fx of the required family. We show that, under certain conditions, the slope function γ ( x , y ) γ ( x , y ) gamma(x,y)\gamma(x, y)γ(x,y) can be obtained as the common solution of two algebraic equations. The theoretical results are illustrated by an example.

1. INTRODUCTION

Monoparametric families of orbits f ( x , y ) = c f ( x , y ) = c f(x,y)=cf(x, y)=cf(x,y)=c, which are produced by a given potential V ( x , y ) V ( x , y ) V(x,y)V(x, y)V(x,y) and which have 'slope function' γ ( x , y ) = f y / f x γ ( x , y ) = f y / f x gamma(x,y)=f_(y)//f_(x)\gamma(x, y)=f_{y} / f_{x}γ(x,y)=fy/fx, satisfy the second order nonlinear PDE (Bozis 1995)
(1) γ 2 γ x x 2 γ γ x y + γ y y = ( γ γ x γ y ) V x + γ V y ( γ x V x ( 2 γ γ x 3 γ y ) V y γ ( V x x V y y ) ( γ 2 1 ) V x y ) , (1) γ 2 γ x x 2 γ γ x y + γ y y = γ γ x γ y V x + γ V y γ x V x 2 γ γ x 3 γ y V y γ V x x V y y γ 2 1 V x y , {:(1)gamma^(2)gamma_(xx)-2gammagamma_(xy)+gamma_(yy)=(-(gammagamma_(x)-gamma_(y)))/(V_(x)+gammaV_(y))(gamma_(x)V_(x)-(2gammagamma_(x)-3gamma_(y))V_(y)-gamma(V_(xx)-V_(yy))-(gamma^(2)-1)V_(xy))",":}\begin{equation*} \gamma^{2} \gamma_{x x}-2 \gamma \gamma_{x y}+\gamma_{y y}=\frac{-\left(\gamma \gamma_{x}-\gamma_{y}\right)}{V_{x}+\gamma V_{y}}\left(\gamma_{x} V_{x}-\left(2 \gamma \gamma_{x}-3 \gamma_{y}\right) V_{y}-\gamma\left(V_{x x}-V_{y y}\right)-\left(\gamma^{2}-1\right) V_{x y}\right), \tag{1} \end{equation*}(1)γ2γxx2γγxy+γyy=(γγxγy)Vx+γVy(γxVx(2γγx3γy)Vyγ(VxxVyy)(γ21)Vxy),
where the subscripts denote partial derivatives. Families of straight lines, for which it is γ γ x γ y = 0 γ γ x γ y = 0 gammagamma_(x)-gamma_(y)=0\gamma \gamma_{x}-\gamma_{y}=0γγxγy=0 and V x + γ V y = 0 V x + γ V y = 0 V_(x)+gammaV_(y)=0V_{x}+\gamma V_{y}=0Vx+γVy=0 (Bozis & Anisiu 2001), are excluded from our study.
The inequality (Bozis & Ichtiaroglou 1994)
(2) B ( x , y ) 0 (2) B ( x , y ) 0 {:(2)B(x","y) >= 0:}\begin{equation*} B(x, y) \geq 0 \tag{2} \end{equation*}(2)B(x,y)0
where
(3) B ( x , y ) = V x + γ V y ( γ γ x γ y ) , (3) B ( x , y ) = V x + γ V y γ γ x γ y , {:(3)B(x","y)=(V_(x)+gammaV_(y))/(-(gammagamma_(x)-gamma_(y)))",":}\begin{equation*} B(x, y)=\frac{V_{x}+\gamma V_{y}}{-\left(\gamma \gamma_{x}-\gamma_{y}\right)}, \tag{3} \end{equation*}(3)B(x,y)=Vx+γVy(γγxγy),
determines the region T orb T orb  T_("orb ")T_{\text {orb }}Torb  of the x y x y xyx yxy plane where the potential V ( x , y ) V ( x , y ) V(x,y)V(x, y)V(x,y) creates real orbits or real parts of the orbits belonging to the family γ ( x , y ) γ ( x , y ) gamma(x,y)\gamma(x, y)γ(x,y).
Conversely, we can select a specific region T orb T orb  T_("orb ")T_{\text {orb }}Torb  of the x y x y xyx yxy plane which we want to make the exclusive allowed region for certain unknown families created by an unknown potential.
We restrict ourselves to regions which are described by one inequality, say
(4) b ( x , y ) 0 , (4) b ( x , y ) 0 , {:(4)b(x","y) >= 0",":}\begin{equation*} b(x, y) \geq 0, \tag{4} \end{equation*}(4)b(x,y)0,
and impose the condition that the function B ( x , y ) B ( x , y ) B(x,y)B(x, y)B(x,y) (corresponding to the pair ( V , γ ) ( V , γ ) (V,gamma)(V, \gamma)(V,γ) ) defines the same region (2) as the inequality (4) does. We interpret this by stating that there must exist a nonvanishing function Θ ( x , y ) Θ ( x , y ) Theta(x,y)\Theta(x, y)Θ(x,y), in a region T 0 T 0 T_(0)T_{0}T0 broader from the region T orb T orb  T_("orb ")T_{\text {orb }}Torb , such that
(5) B ( x , y ) = b ( x , y ) Θ ( x , y ) (6) Θ ( x , y ) 0 for ( x , y ) T 0 and Θ ~ ( x , y ) (5) B ( x , y ) = b ( x , y ) Θ ( x , y ) (6) Θ ( x , y ) 0  for  ( x , y ) T 0  and  Θ ~ ( x , y ) {:[(5)B(x","y)=b(x","y)Theta(x","y)],[(6)Theta(x","y) >= 0" for "(x","y)inT_(0)" and " tilde(Theta)(x","y)!=oo]:}\begin{gather*} B(x, y)=b(x, y) \Theta(x, y) \tag{5}\\ \Theta(x, y) \geq 0 \text { for }(x, y) \in T_{0} \text { and } \tilde{\Theta}(x, y) \neq \infty \tag{6} \end{gather*}(5)B(x,y)=b(x,y)Θ(x,y)(6)Θ(x,y)0 for (x,y)T0 and Θ~(x,y)
where Θ ~ ( x , y ) Θ ~ ( x , y ) tilde(Theta)(x,y)\tilde{\Theta}(x, y)Θ~(x,y) denotes the (one-variable) function Θ ( x , y ) Θ ( x , y ) Theta(x,y)\Theta(x, y)Θ(x,y) evaluated at the points of the curve b ( x , y ) = 0 b ( x , y ) = 0 b(x,y)=0b(x, y)=0b(x,y)=0.
Bozis (1996) solved the problem of finding the force fields which produce a given family of orbits in a fixed in advance region, and Anisiu & Bozis (2000) considered the conservative case for the families f ( x , y ) = y H ( x ) f ( x , y ) = y H ( x ) f(x,y)=y-H(x)f(x, y)=y-H(x)f(x,y)=yH(x) and a given region.

2. BASIC PROGRAMMED MOTION PROBLEM

The function B B BBB satisfies the second order linear equation (Bozis 1995, Anisiu 2003)
(7) B x x + k B x y + B y y = λ B x + μ B y + ν B , k = 1 γ 2 γ , λ = γ x + 2 γ γ y γ , (8) μ = 2 γ γ x 3 γ y γ , ν = 2 ( γ x γ y γ y y + γ γ x y ) γ . (7) B x x + k B x y + B y y = λ B x + μ B y + ν B , k = 1 γ 2 γ , λ = γ x + 2 γ γ y γ , (8) μ = 2 γ γ x 3 γ y γ , ν = 2 γ x γ y γ y y + γ γ x y γ . {:[(7)-B_(xx)+k^(**)B_(xy)+B_(yy)=lambda^(**)B_(x)+mu^(**)B_(y)+nu^(**)B","],[k^(**)=(1-gamma^(2))/(gamma)","quadlambda^(**)=(gamma_(x)+2gammagamma_(y))/(gamma)","],[(8)mu^(**)=(2gammagamma_(x)-3gamma_(y))/(gamma)","quadnu^(**)=(2(gamma_(x)gamma_(y)-gamma_(yy)+gammagamma_(xy)))/(gamma).]:}\begin{align*} & -B_{x x}+k^{*} B_{x y}+B_{y y}=\lambda^{*} B_{x}+\mu^{*} B_{y}+\nu^{*} B, \tag{7}\\ & k^{*}=\frac{1-\gamma^{2}}{\gamma}, \quad \lambda^{*}=\frac{\gamma_{x}+2 \gamma \gamma_{y}}{\gamma}, \\ & \mu^{*}=\frac{2 \gamma \gamma_{x}-3 \gamma_{y}}{\gamma}, \quad \nu^{*}=\frac{2\left(\gamma_{x} \gamma_{y}-\gamma_{y y}+\gamma \gamma_{x y}\right)}{\gamma} . \tag{8} \end{align*}(7)Bxx+kBxy+Byy=λBx+μBy+νB,k=1γ2γ,λ=γx+2γγyγ,(8)μ=2γγx3γyγ,ν=2(γxγyγyy+γγxy)γ.
The first partial derivatives of V V VVV are related to B B BBB by
(9) V x = B ( γ γ x γ y ) + 1 2 γ ( B y γ B x ) , V y = 1 2 ( B y γ B x ) . (9) V x = B γ γ x γ y + 1 2 γ B y γ B x , V y = 1 2 B y γ B x . {:(9)V_(x)=-B(gammagamma_(x)-gamma_(y))+(1)/(2)gamma(B_(y)-gammaB_(x))","quadV_(y)=-(1)/(2)(B_(y)-gammaB_(x)).:}\begin{equation*} V_{x}=-B\left(\gamma \gamma_{x}-\gamma_{y}\right)+\frac{1}{2} \gamma\left(B_{y}-\gamma B_{x}\right), \quad V_{y}=-\frac{1}{2}\left(B_{y}-\gamma B_{x}\right) . \tag{9} \end{equation*}(9)Vx=B(γγxγy)+12γ(ByγBx),Vy=12(ByγBx).
Remark If γ γ gamma\gammaγ is homogeneous of degree zero, then so is k k k^(**)k^{*}k, whereas λ , μ λ , μ lambda^(**),mu^(**)\lambda^{*}, \mu^{*}λ,μ are of degree -1 and ν ν nu^(**)\nu^{*}ν of degree -2 . If B ( x , y ) B ( x , y ) B(x,y)B(x, y)B(x,y) is weighted homogeneous of degrees e.g. n 1 n 1 n_(1)n_{1}n1 and n 2 n 2 n_(2)n_{2}n2, then the entire equation (7) will lead to a weighted homogeneous expression of degrees n 1 2 n 1 2 n_(1)-2n_{1}-2n12 and n 2 2 n 2 2 n_(2)-2n_{2}-2n22.
We suppose that a region is given by the unique inequality (4). The basic programmed motion problem is: What families can be created in the given region (4) and which potentials do generate them? We introduce the function B ( x , y ) B ( x , y ) B(x,y)B(x, y)B(x,y), as given by (5), into the equation (7) and we obtain the linear in Θ Θ Theta\ThetaΘ PDE
(10) b ( Θ x x + K Θ x y + Θ y y ) = L Θ x + M Θ y + N Θ , (10) b Θ x x + K Θ x y + Θ y y = L Θ x + M Θ y + N Θ , {:(10)b(-Theta_(xx)+KTheta_(xy)+Theta_(yy))=LTheta_(x)+MTheta_(y)+N Theta",":}\begin{equation*} b\left(-\Theta_{x x}+K \Theta_{x y}+\Theta_{y y}\right)=L \Theta_{x}+M \Theta_{y}+N \Theta, \tag{10} \end{equation*}(10)b(Θxx+KΘxy+Θyy)=LΘx+MΘy+NΘ,
where
K = k , L = λ b + 2 b x k b y , M = b μ k b x 2 b y (11) N = ν b + λ b x + μ b y + b x x k b x y b y y K = k , L = λ b + 2 b x k b y , M = b μ k b x 2 b y (11) N = ν b + λ b x + μ b y + b x x k b x y b y y {:[K=k^(**)","L=lambda^(**)b+2b_(x)-k^(**)b_(y)","M=bmu^(**)-k^(**)b_(x)-2b_(y)],[(11)N=nu^(**)b+lambda^(**)b_(x)+mu^(**)b_(y)+b_(xx)-k^(**)b_(xy)-b_(yy)]:}\begin{align*} & K=k^{*}, L=\lambda^{*} b+2 b_{x}-k^{*} b_{y}, M=b \mu^{*}-k^{*} b_{x}-2 b_{y} \\ & N=\nu^{*} b+\lambda^{*} b_{x}+\mu^{*} b_{y}+b_{x x}-k^{*} b_{x y}-b_{y y} \tag{11} \end{align*}K=k,L=λb+2bxkby,M=bμkbx2by(11)N=νb+λbx+μby+bxxkbxybyy

3. HOMOGENEITY ASSUMPTIONS

The remark in the preceding section shows that the problem becomes simpler if the functions are homogeneous, therefore we suppose that:
(i) The allowed region is given by (4), where
(12) b = c 0 x m b 0 ( z ) , z = y x , b 0 0 (12) b = c 0 x m b 0 ( z ) , z = y x , b 0 0 {:(12)b=c_(0)-x^(m)b_(0)(z)","quad z=(y)/(x)","quadb_(0)!=0:}\begin{equation*} b=c_{0}-x^{m} b_{0}(z), \quad z=\frac{y}{x}, \quad b_{0} \neq 0 \tag{12} \end{equation*}(12)b=c0xmb0(z),z=yx,b00
(ii) The slope function γ γ gamma\gammaγ is homogeneous of degree zero, i.e.
(13) γ = γ ( z ) (13) γ = γ ( z ) {:(13)gamma=gamma(z):}\begin{equation*} \gamma=\gamma(z) \tag{13} \end{equation*}(13)γ=γ(z)
(iii) The function Θ Θ Theta\ThetaΘ is also homogeneous of degree k k kkk, i.e.
(14) Θ ( x , y ) = x k Θ 0 ( z ) , Θ 0 0 (14) Θ ( x , y ) = x k Θ 0 ( z ) , Θ 0 0 {:(14)Theta(x","y)=x^(k)Theta_(0)(z)","quadTheta_(0)!=0:}\begin{equation*} \Theta(x, y)=x^{k} \Theta_{0}(z), \quad \Theta_{0} \neq 0 \tag{14} \end{equation*}(14)Θ(x,y)=xkΘ0(z),Θ00
Then, equation (10) becomes
(15) R 1 x k + R 2 x m + k = 0 (15) R 1 x k + R 2 x m + k = 0 {:(15)R_(1)x^(k)+R_(2)x^(m+k)=0:}\begin{equation*} R_{1} x^{k}+R_{2} x^{m+k}=0 \tag{15} \end{equation*}(15)R1xk+R2xm+k=0
Both R 1 R 1 R_(1)R_{1}R1 and R 2 R 2 R_(2)R_{2}R2 must vanish identically, resulting in a system of two ODEs of the form
(16) 2 Θ 0 ( z γ + 1 ) γ ¨ + 2 Θ 0 z γ ˙ 2 + k 1 γ ˙ + k 0 = 0 (17) 2 b 0 Θ 0 ( z γ + 1 ) γ ¨ + 2 b 0 Θ 0 z γ ˙ 2 + m 1 γ ˙ + m 0 = 0 , (16) 2 Θ 0 ( z γ + 1 ) γ ¨ + 2 Θ 0 z γ ˙ 2 + k 1 γ ˙ + k 0 = 0 (17) 2 b 0 Θ 0 ( z γ + 1 ) γ ¨ + 2 b 0 Θ 0 z γ ˙ 2 + m 1 γ ˙ + m 0 = 0 , {:[(16)2Theta_(0)(z gamma+1)gamma^(¨)+2Theta_(0)zgamma^(˙)^(2)+k_(1)gamma^(˙)+k_(0)=0],[(17)2b_(0)Theta_(0)(z gamma+1)gamma^(¨)+2b_(0)Theta_(0)zgamma^(˙)^(2)+m_(1)gamma^(˙)+m_(0)=0","]:}\begin{gather*} 2 \Theta_{0}(z \gamma+1) \ddot{\gamma}+2 \Theta_{0} z \dot{\gamma}^{2}+k_{1} \dot{\gamma}+k_{0}=0 \tag{16}\\ 2 b_{0} \Theta_{0}(z \gamma+1) \ddot{\gamma}+2 b_{0} \Theta_{0} z \dot{\gamma}^{2}+m_{1} \dot{\gamma}+m_{0}=0, \tag{17} \end{gather*}(16)2Θ0(zγ+1)γ¨+2Θ0zγ˙2+k1γ˙+k0=0(17)2b0Θ0(zγ+1)γ¨+2b0Θ0zγ˙2+m1γ˙+m0=0,
where k 1 , m 1 k 1 , m 1 k_(1),m_(1)k_{1}, m_{1}k1,m1 are linear in Θ 0 Θ 0 Theta_(0)\Theta_{0}Θ0 and Θ ˙ 0 Θ ˙ 0 Theta^(˙)_(0)\dot{\Theta}_{0}Θ˙0, and k 0 , m 0 k 0 , m 0 k_(0),m_(0)k_{0}, m_{0}k0,m0 in Θ 0 , Θ ˙ 0 Θ 0 , Θ ˙ 0 Theta_(0),Theta^(˙)_(0)\Theta_{0}, \dot{\Theta}_{0}Θ0,Θ˙0 and Θ ¨ 0 Θ ¨ 0 Theta^(¨)_(0)\ddot{\Theta}_{0}Θ¨0.
Our hypotheses ( b 0 0 , Θ 0 0 b 0 0 , Θ 0 0 b_(0)!=0,Theta_(0)!=0b_{0} \neq 0, \Theta_{0} \neq 0b00,Θ00 and straight lines excluded) assure that
(18) b 0 Θ 0 ( 1 + γ z ) 0 (18) b 0 Θ 0 ( 1 + γ z ) 0 {:(18)b_(0)Theta_(0)(1+gamma z)!=0:}\begin{equation*} b_{0} \Theta_{0}(1+\gamma z) \neq 0 \tag{18} \end{equation*}(18)b0Θ0(1+γz)0
therefore the equations (16) and (17) are equivalent to
(19) γ ˙ = Γ 2 γ 2 + Γ 1 γ + Γ 0 Δ 1 γ + Δ 0 , 2 ( 1 + γ z ) γ ¨ + 2 z γ ˙ 2 + K 1 γ ˙ + K 0 = 0 (19) γ ˙ = Γ 2 γ 2 + Γ 1 γ + Γ 0 Δ 1 γ + Δ 0 , 2 ( 1 + γ z ) γ ¨ + 2 z γ ˙ 2 + K 1 γ ˙ + K 0 = 0 {:(19)gamma^(˙)=(Gamma_(2)gamma^(2)+Gamma_(1)gamma+Gamma_(0))/(Delta_(1)gamma+Delta_(0))","quad2(1+gamma z)gamma^(¨)+2zgamma^(˙)^(2)+K_(1)gamma^(˙)+K_(0)=0:}\begin{equation*} \dot{\gamma}=\frac{\Gamma_{2} \gamma^{2}+\Gamma_{1} \gamma+\Gamma_{0}}{\Delta_{1} \gamma+\Delta_{0}}, \quad 2(1+\gamma z) \ddot{\gamma}+2 z \dot{\gamma}^{2}+K_{1} \dot{\gamma}+K_{0}=0 \tag{19} \end{equation*}(19)γ˙=Γ2γ2+Γ1γ+Γ0Δ1γ+Δ0,2(1+γz)γ¨+2zγ˙2+K1γ˙+K0=0
where
(20) Γ 2 = Γ 00 + Γ 01 w , Γ 1 = Γ 10 + Γ 11 w , Γ 0 = Γ 2 Γ 00 = ( 1 k m ) r + z ( r ˙ + r 2 ) , Γ 01 = 2 z r m (21) Γ 10 = m ( 1 2 k m ) 2 ( 1 k m ) z r + ( 1 z 2 ) ( r ˙ + r 2 ) Γ 11 = 2 ( r + m z r z 2 ) , (22) Δ 1 = 2 ( m 2 r z ) , Δ 0 = r z 2 m z 3 r ; (23) K 1 = K 11 γ + K 10 , K 0 = K 02 γ 2 + K 01 γ + K 00 , (24) K 11 = 4 z w + 2 ( 1 k ) , K 10 = ( z 2 3 ) w + k z K 02 = ( 1 k ) w + z ( w ˙ + w 2 ) (25) K 01 = k ( 1 k ) 2 z ( 1 k ) w + ( 1 z 2 ) ( w ˙ + w 2 ) K 00 = ( 1 k ) w z ( w ˙ + w 2 ) , (20) Γ 2 = Γ 00 + Γ 01 w , Γ 1 = Γ 10 + Γ 11 w , Γ 0 = Γ 2 Γ 00 = ( 1 k m ) r + z r ˙ + r 2 , Γ 01 = 2 z r m (21) Γ 10 = m ( 1 2 k m ) 2 ( 1 k m ) z r + 1 z 2 r ˙ + r 2 Γ 11 = 2 r + m z r z 2 , (22) Δ 1 = 2 ( m 2 r z ) , Δ 0 = r z 2 m z 3 r ; (23) K 1 = K 11 γ + K 10 , K 0 = K 02 γ 2 + K 01 γ + K 00 , (24) K 11 = 4 z w + 2 ( 1 k ) , K 10 = z 2 3 w + k z K 02 = ( 1 k ) w + z w ˙ + w 2 (25) K 01 = k ( 1 k ) 2 z ( 1 k ) w + 1 z 2 w ˙ + w 2 K 00 = ( 1 k ) w z w ˙ + w 2 , {:[(20)Gamma_(2)=Gamma_(00)+Gamma_(01)w","quadGamma_(1)=Gamma_(10)+Gamma_(11)w","quadGamma_(0)=-Gamma_(2)],[Gamma_(00)=(1-k-m)r+z((r^(˙))+r^(2))","quadGamma_(01)=2zr-m],[(21)Gamma_(10)=m(1-2k-m)-2(1-k-m)zr+(1-z^(2))((r^(˙))+r^(2))],[Gamma_(11)=2(r+mz-rz^(2))","],[(22)Delta_(1)=2(m-2rz)","quadDelta_(0)=rz^(2)-mz-3r;],[(23)K_(1)=K_(11)gamma+K_(10)","quadK_(0)=K_(02)gamma^(2)+K_(01)gamma+K_(00)","],[(24)K_(11)=4zw+2(1-k)","quadK_(10)=-(z^(2)-3)w+kz],[K_(02)=(1-k)w+z((w^(˙))+w^(2))],[(25)K_(01)=k(1-k)-2z(1-k)w+(1-z^(2))((w^(˙))+w^(2))],[K_(00)=-(1-k)w-z((w^(˙))+w^(2))","]:}\begin{align*} \Gamma_{2}= & \Gamma_{00}+\Gamma_{01} w, \quad \Gamma_{1}=\Gamma_{10}+\Gamma_{11} w, \quad \Gamma_{0}=-\Gamma_{2} \tag{20}\\ \Gamma_{00}= & (1-k-m) r+z\left(\dot{r}+r^{2}\right), \quad \Gamma_{01}=2 z r-m \\ \Gamma_{10}= & m(1-2 k-m)-2(1-k-m) z r+\left(1-z^{2}\right)\left(\dot{r}+r^{2}\right) \tag{21}\\ \Gamma_{11}= & 2\left(r+m z-r z^{2}\right), \\ & \Delta_{1}=2(m-2 r z), \quad \Delta_{0}=r z^{2}-m z-3 r ; \tag{22}\\ K_{1}= & K_{11} \gamma+K_{10}, \quad K_{0}=K_{02} \gamma^{2}+K_{01} \gamma+K_{00}, \tag{23}\\ K_{11}= & 4 z w+2(1-k), \quad K_{10}=-\left(z^{2}-3\right) w+k z \tag{24}\\ K_{02}= & (1-k) w+z\left(\dot{w}+w^{2}\right) \\ K_{01}= & k(1-k)-2 z(1-k) w+\left(1-z^{2}\right)\left(\dot{w}+w^{2}\right) \tag{25}\\ K_{00}= & -(1-k) w-z\left(\dot{w}+w^{2}\right), \end{align*}(20)Γ2=Γ00+Γ01w,Γ1=Γ10+Γ11w,Γ0=Γ2Γ00=(1km)r+z(r˙+r2),Γ01=2zrm(21)Γ10=m(12km)2(1km)zr+(1z2)(r˙+r2)Γ11=2(r+mzrz2),(22)Δ1=2(m2rz),Δ0=rz2mz3r;(23)K1=K11γ+K10,K0=K02γ2+K01γ+K00,(24)K11=4zw+2(1k),K10=(z23)w+kzK02=(1k)w+z(w˙+w2)(25)K01=k(1k)2z(1k)w+(1z2)(w˙+w2)K00=(1k)wz(w˙+w2),
with
(26) Θ ˙ 0 = w Θ 0 , b ˙ 0 = r b 0 . (26) Θ ˙ 0 = w Θ 0 , b ˙ 0 = r b 0 . {:(26)Theta^(˙)_(0)=wTheta_(0)","quadb^(˙)_(0)=rb_(0).:}\begin{equation*} \dot{\Theta}_{0}=w \Theta_{0}, \quad \dot{b}_{0}=r b_{0} . \tag{26} \end{equation*}(26)Θ˙0=wΘ0,b˙0=rb0.
We consider m , r = b ˙ 0 / b 0 , c 0 m , r = b ˙ 0 / b 0 , c 0 m,r=b^(˙)_(0)//b_(0),c_(0)m, r=\dot{b}_{0} / b_{0}, c_{0}m,r=b˙0/b0,c0 (i.e. the function b b bbb given by (12)) as known and we try to make compatible the two equations (19). In so doing, we prepare γ ¨ γ ¨ gamma^(¨)\ddot{\gamma}γ¨ from the first of equations (19), insert into the second one and obtain the quintic in γ γ gamma\gammaγ algebraic equation
(27) α 5 γ 5 + α 4 γ 4 + α 3 γ 3 + α 2 γ 2 + α 1 γ + α 0 = 0 , (27) α 5 γ 5 + α 4 γ 4 + α 3 γ 3 + α 2 γ 2 + α 1 γ + α 0 = 0 , {:(27)alpha_(5)gamma^(5)+alpha_(4)gamma^(4)+alpha_(3)gamma^(3)+alpha_(2)gamma^(2)+alpha_(1)gamma+alpha_(0)=0",":}\begin{equation*} \alpha_{5} \gamma^{5}+\alpha_{4} \gamma^{4}+\alpha_{3} \gamma^{3}+\alpha_{2} \gamma^{2}+\alpha_{1} \gamma+\alpha_{0}=0, \tag{27} \end{equation*}(27)α5γ5+α4γ4+α3γ3+α2γ2+α1γ+α0=0,
where the coefficients α 5 , α 4 , , α 0 α 5 , α 4 , , α 0 alpha_(5),alpha_(4),dots,alpha_(0)\alpha_{5}, \alpha_{4}, \ldots, \alpha_{0}α5,α4,,α0 are functions of z z zzz, and of w w www and its derivative of the first order.
We now differentiate (27) in z z zzz and we obtain γ ˙ γ ˙ gamma^(˙)\dot{\gamma}γ˙ which we equate to γ ˙ γ ˙ gamma^(˙)\dot{\gamma}γ˙ given by the first of equations (19), and get
(28) β 6 γ 6 + β 5 γ 5 + β 4 γ 4 + β 3 γ 3 + β 2 γ 2 + β 1 γ + β 0 = 0 , (28) β 6 γ 6 + β 5 γ 5 + β 4 γ 4 + β 3 γ 3 + β 2 γ 2 + β 1 γ + β 0 = 0 , {:(28)beta_(6)gamma^(6)+beta_(5)gamma^(5)+beta_(4)gamma^(4)+beta_(3)gamma^(3)+beta_(2)gamma^(2)+beta_(1)gamma+beta_(0)=0",":}\begin{equation*} \beta_{6} \gamma^{6}+\beta_{5} \gamma^{5}+\beta_{4} \gamma^{4}+\beta_{3} \gamma^{3}+\beta_{2} \gamma^{2}+\beta_{1} \gamma+\beta_{0}=0, \tag{28} \end{equation*}(28)β6γ6+β5γ5+β4γ4+β3γ3+β2γ2+β1γ+β0=0,
where the coefficients β 6 , β 5 , , β 0 β 6 , β 5 , , β 0 beta_(6),beta_(5),dots,beta_(0)\beta_{6}, \beta_{5}, \ldots, \beta_{0}β6,β5,,β0 are functions of z z zzz, and of w , w ˙ , w ¨ w , w ˙ , w ¨ w,w^(˙),w^(¨)w, \dot{w}, \ddot{w}w,w˙,w¨. We are interested in the common roots of the equations (27) and (28) and this leads us to the eleventh order Sylvester determinant which is an ODE in w w www of the second order.
We have to analyze also the case when
(29) Δ 1 γ + Δ 0 = 0 . (29) Δ 1 γ + Δ 0 = 0 . {:(29)Delta_(1)gamma+Delta_(0)=0.:}\begin{equation*} \Delta_{1} \gamma+\Delta_{0}=0 . \tag{29} \end{equation*}(29)Δ1γ+Δ0=0.
If Γ 2 γ 2 + Γ 1 γ + Γ 0 0 Γ 2 γ 2 + Γ 1 γ + Γ 0 0 Gamma_(2)gamma^(2)+Gamma_(1)gamma+Gamma_(0)!=0\Gamma_{2} \gamma^{2}+\Gamma_{1} \gamma+\Gamma_{0} \neq 0Γ2γ2+Γ1γ+Γ00, the first of equations (19), hence the considered problem, has no solution. If Γ 2 γ 2 + Γ 1 γ + Γ 0 = 0 Γ 2 γ 2 + Γ 1 γ + Γ 0 = 0 Gamma_(2)gamma^(2)+Gamma_(1)gamma+Gamma_(0)=0\Gamma_{2} \gamma^{2}+\Gamma_{1} \gamma+\Gamma_{0}=0Γ2γ2+Γ1γ+Γ0=0, we express γ γ gamma\gammaγ from (29) and substitute it in the second equation in (19). We obtain a solution for our problem if we can find a function w w www which gives a suitable Θ Θ Theta\ThetaΘ.

4. EXAMPLE

Let us try to find families of orbits and the corresponding potentials creating them in the region
(30) y 1 . (30) y 1 . {:(30)y <= 1.:}\begin{equation*} y \leq 1 . \tag{30} \end{equation*}(30)y1.
We can write
(31) b ( x , y ) = 1 y , (31) b ( x , y ) = 1 y , {:(31)b(x","y)=1-y",":}\begin{equation*} b(x, y)=1-y, \tag{31} \end{equation*}(31)b(x,y)=1y,
hence
(32) m = 1 , b 0 ( z ) = z and c 0 = 1 . (32) m = 1 , b 0 ( z ) = z  and  c 0 = 1 . {:(32)m=1","b_(0)(z)=z" and "c_(0)=1.:}\begin{equation*} m=1, b_{0}(z)=z \text { and } c_{0}=1 . \tag{32} \end{equation*}(32)m=1,b0(z)=z and c0=1.
We can now verify that, with k = 2 k = 2 k=2k=2k=2, the Sylvester determinant of (27) and (28) (which for the case at hand are of degree four and five) admits of a solution Θ 0 ( z ) = z 2 / 2 Θ 0 ( z ) = z 2 / 2 Theta_(0)(z)=z^(2)//2\Theta_{0}(z)=z^{2} / 2Θ0(z)=z2/2, which gives
(33) Θ ( x , y ) = y 2 / 2 . (33) Θ ( x , y ) = y 2 / 2 . {:(33)Theta(x","y)=y^(2)//2.:}\begin{equation*} \Theta(x, y)=y^{2} / 2 . \tag{33} \end{equation*}(33)Θ(x,y)=y2/2.
According to (5), (31) and (33), we find
(34) B ( x , y ) = 8 y 2 ( 1 y ) . (34) B ( x , y ) = 8 y 2 ( 1 y ) . {:(34)B(x","y)=8y^(2)(1-y).:}\begin{equation*} B(x, y)=8 y^{2}(1-y) . \tag{34} \end{equation*}(34)B(x,y)=8y2(1y).
Equations (27) and (28) have the common solution γ = 1 / ( 2 z ) γ = 1 / ( 2 z ) gamma=1//(2z)\gamma=1 /(2 z)γ=1/(2z), and from (9) we get the Hénon-Heiles type potential
(35) V ( x , y ) = x 2 4 y 2 + 4 y 3 . (35) V ( x , y ) = x 2 4 y 2 + 4 y 3 . {:(35)V(x","y)=-x^(2)-4y^(2)+4y^(3).:}\begin{equation*} V(x, y)=-x^{2}-4 y^{2}+4 y^{3} . \tag{35} \end{equation*}(35)V(x,y)=x24y2+4y3.
The potential (35) generates the family of curves f ( x , y ) = x 2 y f ( x , y ) = x 2 y f(x,y)=x^(2)yf(x, y)=x^{2} yf(x,y)=x2y, traced in the region (30).
Figure 1: Curves of the family x 2 y = c x 2 y = c x^(2)y=cx^{2} y=cx2y=c in the region (30) for c 1 = 0.002 , c 2 = 0.0045 c 1 = 0.002 , c 2 = 0.0045 c_(1)=0.002,c_(2)=0.0045c_{1}=0.002, c_{2}=0.0045c1=0.002,c2=0.0045 and c 3 = 0.008 c 3 = 0.008 c_(3)=0.008c_{3}=0.008c3=0.008

References

Anisiu, M.-C. : 2003, Analysis and Optimization of Differential Systems, eds. V. Barbu et al., Kluwer Academic Publishers, Boston/Dordrecht/London, 13.
Anisiu, M.-C., Bozis, G. : 2000, Inverse Problems 16, 19.
Bozis, G. : 1995, Inverse Problems 11, 687.
Bozis, G. : 1996, Proceedings of the 2nd Hellenic Astronomical Conference, eds. M. E. Kontadakis et al., Thessaloniki, Greece, 587.
Bozis, G., Anisiu, M.-C. : 2001, Rom. Astron. J. 11, 27.
Bozis, G., Ichtiaroglou, S. : 1994, Celest. Mech. Dyn. Astron. 58, 371.
2009

Related Posts