Abstract
A result of T. Popoviciu, which characterizes real linear functionals on \(C(I)\) that are positive on n-convex functions as divided differences, is extended to the case of quasiconvex functions of order n to characterize on C(I)∩F-1(-∞,0) those real linear functionals F which are homogeneous for positive multipliers and sublinear.
Authors
Radu Precup
Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania
Keywords
?
Cite this paper as:
R. Precup, Quasiconvex functions of higher order and the behavior of some nonlinear functionals, Anal. Numér. Théor. Approx., 21 (1992) no. 2, pp. 191-193.
About this paper
Journal
Publisher Name
Academia Republicii S.R.
DOI
Not available yet.
Print ISSN
Not available yet.
Online ISSN
Not available yet.
References
[1] Popoviciu, E., Sur une allure de quasi-convexité d’ordre supérieure, Mathematica, Rev. Anal. Numér. The’or. Approx., Anal. Numeŕ. théor. Approx., 11, pp. 129-137 (1982).
[2] Popoviciu, E., Teoreme de medie din analiza matematică şi legătura lor cu teoria interpolării. Ed. Dacia, Cluj, 1972.
[3] Popoviciu, T., Notes sur les fonctions convexes d’ordre supérieur (IX), Bull. Math. de la Soc. Roumaine des Sci., 43, pp. 85-141 (1941).
[4] Precup, R., On the quasiconvex functions of higher order, “Babeş-Bolyai” Univ., Preprint Nr. 6, pp. 275-282 (1989).