In the present note, we study a certain Durrmeyer type integral modification of Bernstein polynomials. We investigate simultaneous approximation and estimate the rate of convergence in simultaneous approximation.
Authors
V. GUPTA
School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110075, India
T. SHERVASHIDZE
A. Razmadze Mathematical Institute, Georgian Academy of Science 1, M. Aleksidze St., Tbilisi 0193 Georgia
M. Craciun
Tiberiu Popoviciu Institute of Numerical Analysis (Romanian Academy)
Keywords
Lebesgue integrable functions; Bernstein polynomials; functions of bounded variation.
[1] O. Agratini, On the rate of convergence of some integral operators for functions of bounded variation. Studia Sci. Math. Hungar. 42(2005), No. 2, 235–252
[2] R. N. Bhattacharya and R. Ranga Rao, Normal approximation and asymptotic expansions. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York–London–Sydney, 1976.
[3] J. L. Durrmeyer, Une formule d’inversion de la transformee de Laplace: Application a la Theorie des Moments. These de 3e cycles, Faculte des Sciences de l’ Universite de Paris, 1967.
[4] S. S. Guo, On the rate of convergence of the Durrmeyer operator for functions of bounded variation. J. Approx. Theory 51(1987), No. 2, 183–192.
[5] V. Gupta, A note on the rate of convergence of Durrmeyer type operators for function of bounded variation. Soochow J. Math. 23(1997), No. 1, 115–118.
[6] V. Gupta and P. Maheshwari, Bezier variant of a new Durrmeyer type operators. Riv. Mat. Univ. Parma (7) 2(2003), 9–21.
[7] V. Gupta and G. S. Srivastava, Approximation by Durrmeyer-type operators. Ann. Polon. Math. 64(1996), No. 2, 153–159.
[8] X. M. Zeng, Bounds for Bernstein basis functions and Meyer–Konig and Zeller basis functions, J. Math. Anal. Appl. 219(1998), No. 2, 364–376.
Paper (preprint) in HTML form
gmj13024
RATE OF APPROXIMATION FOR CERTAIN DURRMEYER OPERATORS
VIJAY GUPTA, TENGIZ SHERVASHIDZE, AND MARIA CRACIUN
Abstract
In the present note, we study a certain Durrmeyer type integral modification of Bernstein polynomials. We investigate simultaneous approximation and estimate the rate of convergence in simultaneous approximation.
2000 Mathematics Subject Classification: 41A30, 41A36.
Key words and phrases: Lebesgue integrable functions, Bernstein polynomials, functions of bounded variation.
1. Introduction
Durrmeyer [3] introduced the integral modification of Bernstein polynomials to approximate Lebesgue integrable functions on the interval [0,1][0,1]. The operators introduced by Durrmeyer are defined by
{:(1)D_(n)(f","x)=(n+1)sum_(k=0)^(n)p_(n,k)(x)int_(0)^(1)p_(n,k)(t)f(t)dt","quad x in[0","1]:}\begin{equation*}
D_{n}(f, x)=(n+1) \sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{1} p_{n, k}(t) f(t) d t, \quad x \in[0,1] \tag{1}
\end{equation*}
where p_(n,k)=((n)/(k))x^(k)(1-x)^(n-k)p_{n, k}=\binom{n}{k} x^{k}(1-x)^{n-k}.
Gupta [5] introduced a different Durrmeyer type modification of Bernstein polynomials and estimated the rate of convergence for functions of bounded variation. The operators introduced in [5] are defined by
{:(2)B_(n)(f","x)=sum_(k=0)^(n)p_(n,k)(x)int_(0)^(1)b_(n,k)(t)f(t)dt","quad x in[0","1]:}\begin{equation*}
B_{n}(f, x)=\sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{1} b_{n, k}(t) f(t) d t, \quad x \in[0,1] \tag{2}
\end{equation*}
and phi_(n)(x)=(1-x)^(n)\phi_{n}(x)=(1-x)^{n}. It is easily verified that the values of p_(n,k)(x)p_{n, k}(x) used in (1) and (2) are the same. Also, sum_(k=0)^(n)p_(n,k)(x)=1,int_(0)^(1)b_(n,k)(t)dt=1\sum_{k=0}^{n} p_{n, k}(x)=1, \int_{0}^{1} b_{n, k}(t) d t=1 and b_(n,n)=0b_{n, n}=0. Guo [4] estimated the rate of convergence for bounded variation functions for the usual Bernstein-Durrmeyer operators defined by (1). By considering the integral modification of Bernstein polynomials in form (2) some approximation properties become simpler in the analysis. Therefore it is important to carry
out a further study of different integral modifications of Bernstein polynomials B_(n)(f,x)B_{n}(f, x). Recently, Agratini [1] also estimated the rate of convergence for functions of bounded variation for some integral operators which include operators (2). He obtained the results on ordinary approximation. In the present paper, we estimate the rate of convergence in simultaneous approximation for operators B_(n)(f,x)B_{n}(f, x).
2. Auxiliary Results
In this section we give the results which are necessary to prove the main result.
Lemma 1 ([7]). For m,r inN^(0)-=N uu{0}m, r \in N^{0} \equiv N \cup\{0\} (the set of non-negative integers), r <= nr \leq n, if we define
V_(r,n,m)(x)=sum_(k=0)^(n-r)p_(n-r,x)(x)int_(0)^(1)b_(n+r,k+r)(t)(t-x)^(m)dtV_{r, n, m}(x)=\sum_{k=0}^{n-r} p_{n-r, x}(x) \int_{0}^{1} b_{n+r, k+r}(t)(t-x)^{m} d t
then
{:[V_(r,n,0)(x)=1","quadV_(r,n,1)(x)=((1+r)-x(1+2r))/(n+r+1)],[V_(r,n,2)(x)=((r^(2)+3r+2)+2x(n-2r^(2)-5r-2)-2x^(2)(n-2r^(2)-4r-1))/(n+r+1)","]:}\begin{gathered}
V_{r, n, 0}(x)=1, \quad V_{r, n, 1}(x)=\frac{(1+r)-x(1+2 r)}{n+r+1} \\
V_{r, n, 2}(x)=\frac{\left(r^{2}+3 r+2\right)+2 x\left(n-2 r^{2}-5 r-2\right)-2 x^{2}\left(n-2 r^{2}-4 r-1\right)}{n+r+1},
\end{gathered}
and we have the recurrence relation
{:[{:[n+r+m+1]V_(r,n,m+1)(x)=:}x(1-x)[V_(r,n,m)^((1))(x)+2mV_(r,n,m-1)(x)]],[+[(1-2x)(m+r+1)+x]V_(r,n,m)(x)]:}\begin{aligned}
{[n+r+m+1] V_{r, n, m+1}(x)=} & x(1-x)\left[V_{r, n, m}^{(1)}(x)+2 m V_{r, n, m-1}(x)\right] \\
& +[(1-2 x)(m+r+1)+x] V_{r, n, m}(x)
\end{aligned}
Remark 2. If nn is sufficiently large, then by Lemma 1 it is easy to verift that
Lemma 3 ([8]). For every 0 <= k <= n,x in(0,1)0 \leq k \leq n, x \in(0,1) and for all n in Nn \in N, we have
p_(n,k)(x) <= (1)/(sqrt(2enx(1-x)))p_{n, k}(x) \leq \frac{1}{\sqrt{2 e n x(1-x)}}
Lemma 4 ([7]). If f inL_(1)[0,1],f^((r-1))in A.Cf \in L_{1}[0,1], f^{(r-1)} \in A . C. loc,f^((r))inL_(1)[0,1]f^{(r)} \in L_{1}[0,1] and 1 <= r < n1 \leq r<n, then
B_(n)^((r))(f,x)=((n!)^(2))/((n-r)!(n+r)!)sum_(k=0)^(n-r)p_(n-r,k)(x)int_(0)^(1)b_(n+r,k+r)(t)f^((r))(t)dtB_{n}^{(r)}(f, x)=\frac{(n!)^{2}}{(n-r)!(n+r)!} \sum_{k=0}^{n-r} p_{n-r, k}(x) \int_{0}^{1} b_{n+r, k+r}(t) f^{(r)}(t) d t
Lemma 5. Let x in(0,1)x \in(0,1) and K_(n,r)(x,t)=sum_(k=0)^(n-r)p_(n-r,k)(x)b_(n+r,k+r)(t)K_{n, r}(x, t)=\sum_{k=0}^{n-r} p_{n-r, k}(x) b_{n+r, k+r}(t), then for nn sufficiently large, we have
{:(3)lambda_(n,gamma)(x","y):=int_(0)^(y)K_(n,gamma)(x","t)dt <= (2x(1-x))/(n(x-y)^(2))","quad0 <= y < x:}\begin{equation*}
\lambda_{n, \gamma}(x, y):=\int_{0}^{y} K_{n, \gamma}(x, t) d t \leq \frac{2 x(1-x)}{n(x-y)^{2}}, \quad 0 \leq y<x \tag{3}
\end{equation*}
{:(4)1-lambda_(n,gamma)(x","z):=int_(z)^(1)K_(n,gamma)(x","t)dt <= (2x(1-x))/(n(z-x)^(2))","quad x < z < 1:}\begin{equation*}
1-\lambda_{n, \gamma}(x, z):=\int_{z}^{1} K_{n, \gamma}(x, t) d t \leq \frac{2 x(1-x)}{n(z-x)^{2}}, \quad x<z<1 \tag{4}
\end{equation*}
Proof. We first prove (3) by Lemma 1 as follows:
{:[int_(0)^(y)K_(n,gamma)(x","t)dt <= int_(0)^(y)K_(n,gamma)(x","t)((x-t)^(2))/((x-y)^(2))dt],[ <= (1)/((x-y)^(2))int_(0)^(1)K_(n,gamma)(x","t)(t-x)^(2)dt <= (V_(r,n,2)(x))/((x-y)^(2)) <= (2x(1-x))/(n(x-y)^(2))]:}\begin{aligned}
\int_{0}^{y} K_{n, \gamma}(x, t) d t & \leq \int_{0}^{y} K_{n, \gamma}(x, t) \frac{(x-t)^{2}}{(x-y)^{2}} d t \\
& \leq \frac{1}{(x-y)^{2}} \int_{0}^{1} K_{n, \gamma}(x, t)(t-x)^{2} d t \leq \frac{V_{r, n, 2}(x)}{(x-y)^{2}} \leq \frac{2 x(1-x)}{n(x-y)^{2}}
\end{aligned}
The proof of (4) is similar.
3. Main Result
Theorem. Let f inH_(r),r inN^(0)f \in H_{r}, r \in N^{0}. Then for every x in(0,1)x \in(0,1) and nn sufficiently large, we have
{:[B_(n)^((r))(sign(t-x)","x)=int_(x)^(1)K_(n,gamma)(x","t)dt-int_(0)^(x)K_(n,gamma)(x","t)dt],[=A_(n,gamma)-B_(n,gamma)","quad" say. "]:}\begin{aligned}
B_{n}^{(r)}(\operatorname{sign}(t-x), x) & =\int_{x}^{1} K_{n, \gamma}(x, t) d t-\int_{0}^{x} K_{n, \gamma}(x, t) d t \\
& =A_{n, \gamma}-B_{n, \gamma}, \quad \text { say. }
\end{aligned}
It is easy to verify that A_(n,gamma)(x)+B_(n,gamma)(x)=1A_{n, \gamma}(x)+B_{n, \gamma}(x)=1. Thus B_(n)^((r))(sign(t-x),x)=1-2A_(n,gamma)(x)B_{n}^{(r)}(\operatorname{sign}(t-x), x)=1- 2 A_{n, \gamma}(x). Using Lemma 1, Lemma 2 and the fact that sum_(j=0)^(k)p_(n,j)(x)=int_(x)^(1)b_(n,k)(t)dt\sum_{j=0}^{k} p_{n, j}(x)=\int_{x}^{1} b_{n, k}(t) d t, we have
If xi\xi and eta\eta are independent random variables with the same distribution P\mathcal{P} assigning the probability p_(k),sum_(k=1)^(oo)p_(k)=1p_{k}, \sum_{k=1}^{\infty} p_{k}=1, to the number b_(k),k=1,2,dotsb_{k}, k=1,2, \ldots, such that b_(1) < b+2 < cdotsb_{1}<b+2<\cdots, then
If now P\mathcal{P} is the binomial distribution with the parameters n-rn-r (number of independent trials) and xx (success probability in each trial), then we have S=P(xi <= eta)S= P(\xi \leq \eta) and due to (13) and Lemma 2, we have
Combining estimates of (6), (7), (8) and (15), our theorem follows.
Acknowledgement
This article was completed in the framework of a cooperation with the Department of Mathematics of the Rome University "La Sapienza".
References
O. Agratini, On the rate of convergence of some integral operators for functions of bounded variation. Studia Sci. Math. Hungar. 42(2005), No. 2, 235-252
R. N. Bhattacharya and R. Ranga Rao, Normal approximation and asymptotic expansions. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-London-Sydney, 1976.
J. L. Durrmeyer, Une formule d'inversion de la transformee de Laplace: Application a la Theorie des Moments. These de 3e cycles, Faculte des Sciences de l' Universite de Paris, 1967.
S. S. Guo, On the rate of convergence of the Durrmeyer operator for functions of bounded variation. J. Approx. Theory 51(1987), No. 2, 183-192.
V. Gupta, A note on the rate of convergence of Durrmeyer type operators for function of bounded variation. Soochow J. Math. 23(1997), No. 1, 115-118.
V. Gupta and P. Maheshwari, Bezier variant of a new Durrmeyer type operators. Riv. Mat. Univ. Parma (7) 2(2003), 9-21.
V. Gupta and G. S. Srivastava, Approximation by Durrmeyer-type operators. Ann. Polon. Math. 64(1996), No. 2, 153-159.
X. M. Zeng, Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions. J. Math. Anal. Appl. 219(1998), No. 2, 364-376.
(Received 19.09.2005; revised 22.04.2006)
Authors' addresses:
V. Gupta
School of Applied Sciences
Netaji Subhas Institute of Technology
Sector 3 Dwarka, New Delhi 110075,
India
E-mail: vijaygupta2001@hotmail.com
T. ShervashidzeA. Razmadze Mathematical InstituteGeorgian Academy of Science1, M. Aleksidze St., Tbilisi 0193GeorgiaE-mail: sher@rmi.acnet.geM. CraciunTiberiu Popoviciu, Institute of Numerical AnalysisP. O. Box 68-1, 3400 Cluj-NapocaRomaniaE-Mail: craciun@ictp.acad.ro