[1] Agratini, O., Linear operators generated by a probability density funciton, pp. 1-12, In: Advances Constructive Approximation: Vanderbilt 2003, M. Neamtu and E.B. Saff (eds.), Nashboro Press, Brentwood, TN, 2004.
[2] Agratini, O., On the reate of convergence of some integral operators for functions of bounded variation, Studia Sci. Math. Hungarica, vol. 42 (in print).
[3] Altomare, F., Campiti, M., Korovkin-type Approximaiton Theory and its Applications, de Gruyter Studies in Mathematics, vol. 17, Walter de Gruyter, Berlin, 1994.
[4] Anastassiou, G., Quantitative Approximation, Champan & Hall/CRC, Boca Raton, 2001.
[5] Aniol, G., On the rate of pointwise convergence of the Kantorovich-type operators, Fasciculi Matematici, 29 (1999), 5-15.
[6] Bojanic, R., Vuilleumier, M., On the rate of convergence of Fourier-Legendre series of funcitons of bounded variation, J. Approx. Theory, 31 (1981), 67-79.
[7] Bojanic, R., Khan, M.K., Rate of convergence of some operators of funcitons with derivatives of bounded variation, Atti. Sem. Mat.Fis. Univ. Modena, 29(1991), 158-170.
[8] Cardaliaguet, P., Euvrard, G., Approximation of a function and its derivative with a neural network, Neural Networks, 5(1992), 207-220.
[9] Cheng, F., On the rate of convergence of Bernstein polynomials of functions of bounded variation, J. Approx. Theory, 39(1983), 259-274.
[10] Guo, S.S., Khan, M.K., On the rate of convergence of some operators of funcitons of bounded variation, J. Approx. Theory, 58(1989), 90-101.
[11] Gupta, V., The Bezier vriant of Kantorovich operators, Computers and Mathematics with Applicaitons, 47(2004), 227-232.
[12] Gypta, V., Abel, U., On the rate of convergence of Beizer variant of Szasz-Durrmeyer operators, Analysis in Theory and Applicaitons, 19(2003), 1, 81-88.
[13] Gupta, V., Arya, K.V., On the rate of poinwiste convergence of modified Baskakov type operators for funcitons of bounded variation, Kyungpook Math. J., 38 (1998), 283-291.
[14] Gupta, V., Pant, R.P., Rate of convergence for the modified Szasz-Mirakyan operators on functions of bounded variation, J. Math. Anal. Appl. 233(1999), 476-483.
[15] Khan, M.K., On the rate convergence of Bernstein power series for functions of bounded variation, J. Approx. Theory, 57(1989), 90-103.
[16] Lupas, A., Contributions to the theory of approximation by linear operators (in Romanian), Ph. d. Theseis, Babes-Bolyai University Cluj-Napoca, 1975.
[17] Sahai, A., Prasad, G., On the rate convergence for modified Szasz-Mirakyan operators on functions of bounded variatio, Publications de l’Institut Mathematique, Beograd, 53((67)(1993), 73-80.
[18] Zeng, X.-M., On the rate of convergence of the generalized Szasz type operators for funcitons of bounded variation, J. Math. Anal. Appl.,226(1998), 309-325.
[19] Zeng, X.-M, Chen, W., On the rate of convergence of the generalized Durrmeyer type operators for funcitons of bounded variation, J.Approx. Theory, 102(2000), 1-12.
[20] Zeng, X.-M, Gupta, V., Rate of convergence of Baskakov-Bezier type operators for locally bounded funcitons, Computers and Mathematics with Applicaitons, 44(2002), 1445-1453.
[21] Zeng, X.-M., Zhao, J.-N.,I Pointwise approximation by Meyer-Konig and Zeller operators, Annales Polonici Mathematici, 73(2000), 2, 185-196.