Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Remarques sur les polynômes binomiaux, Buletinul Soc. de Ştiinţe din Cluj, 6 (1931), pp. 146-148 (in French).

PDF

About this paper

Journal

 Buletinul Soc. de Ştiinţe din Cluj

Publisher Name
DOI
Print ISSN

not available

Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1932 e -Popoviciu- Mathematica - Remarks on Binomial Polynomials
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

NOTES ON BINOMIAL POLYNOMIES

by

T. Popoviciu

Former student of the École Normale Supérieure.
Admitted on April 28, 1981.
We say that the sequence of polynomials in x x xxx
(1)
P 0 , P 1 , P n , P 0 , P 1 , P n , P_(0),P_(1),dotsP_(n),dots\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots \mathrm{P}_{n}, \ldotsP0,P1,Pn,
the degree of each being equal to the corresponding index, is a binomial sequence if it satisfies the equations
(2) P n ( x + y ) = i = 0 n P i ( x ) P n i ( y ) (2) P n ( x + y ) = i = 0 n P i ( x ) P n i ( y ) {:(2)P_(n)(x+y)=sum_(i=0)^(n)P_(i)(x)P_(ni)(y):}\begin{equation*} P_{n}(x+y)=\sum_{i=0}^{n} P_{i}(x) P_{ni}(y) \tag{2} \end{equation*}(2)Pn(x+y)=i=0nPi(x)Pni(y)
For n = 0 , 1 , 2 , n = 0 , 1 , 2 , n=0,1,2,dotsn=0,1,2, \ldotsn=0,1,2,and similarly in x x xxxAnd y y yyyWe then have
P 0 = 1 , P n ( 0 ) = 0 , n = 1 , 2 , P 0 = 1 , P n ( 0 ) = 0 , n = 1 , 2 , P_(0)=1,quadP_(n)(0)=0,quad n=1,2,dotsP_{0}=1, \quad P_{n}(0)=0, \quad n=1,2, \ldotsP0=1,Pn(0)=0,n=1,2,
Binomial sequences are obtained through the following formal expansion
(3) ( 1 + has 1 z + has 2 z 2 + ) x = e x ( c 1 z + c 2 z 2 + ) = n = 0 P n ( x ) z π (3) 1 + has 1 z + has 2 z 2 + x = e x c 1 z + c 2 z 2 + = n = 0 P n ( x ) z π {:(3)(1+a_(1)z+a_(2)z^(2)+cdots)^(x)=e^(x(c_(1)z+c_(2)z^(2)+cdots))=sum_(n=0)^(oo)P_(n)(x)z^(pi):}\begin{equation*} \left(1+a_{1} z+a_{2} z^{2}+\cdots\right)^{x}=e^{x\left(c_{1} z+c_{2} z^{2}+\cdots\right)}=\sum_{n=0}^{\infty} P_{n}(x) z^{\pi} \tag{3} \end{equation*}(3)(1+has1z+has2z2+)x=ex(c1z+c2z2+)=n=0Pn(x)zπ
It is easy to find the coefficients c n c n c_(n)c_{n}cndepending on the has n has n year)year}hasnand vice versa.
  1. If
c n 0 , n = 1 , 2 , 3 , c n 0 , n = 1 , 2 , 3 , c_(n) >= 0,quad n=1,2,3,dotsc_{n} \geq 0, \quad n=1,2,3, \ldotscn0,n=1,2,3,
we also have
and if
has n 0 , n = 1 , 2 , 3 , has n 0 , n = 1 , 2 , 3 , a_(n) >= 0,quad n=1,2,3,dotsa_{n} \geq 0, \quad n=1,2,3, \ldotshasn0,n=1,2,3,
we also have
c n 0 , n = 1 , 2 , 3 , has 1 > 0 has n > 0 , n = 2 , 3 , c n 0 ,      n = 1 , 2 , 3 , has 1 > 0 has n > 0 ,      n = 2 , 3 , {:[c_(n) >= 0",",n=1","2","3","dotsa_(1) > 0],[a_(n) > 0",",n=2","3","dots]:}\begin{array}{ll} c_{n} \geq 0, & n=1,2,3, \ldots a_{1}>0 \\ a_{n}>0, & n=2,3, \ldots \end{array}cn0,n=1,2,3,has1>0hasn>0,n=2,3,
We easily find that
a is a positive number so that we have
P n ( x ) 0 P n ( x ) 0 P_(n)(x) >= 0P_{n}(x) \geq 0Pn(x)0
n = 0 , 1.9 , n = 0 , 1.9 , n=0,1.9,dotsn=0,1.9, \ldotsn=0,1.9,
in the interval (0, a) it is necessary and sufficient that
(5) c n 0 , n = 1 , 2 , (5) c n 0 , n = 1 , 2 , {:(5)c_(n) >= 0","quad n=1","2","dots:}\begin{equation*} c_{n} \geq 0, \quad n=1,2, \ldots \tag{5} \end{equation*}(5)cn0,n=1,2,
It also follows from (2) that inequalities (4) are verified throughout the interval ( 0 , ) ( 0 , ) (0,oo)(0, \infty)(0,).
Either f ( x ) f ( x ) f(x)f(x)f(x)a uniform and continuous function in the interval Cermé ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1).
Given that inequalities (5) are verified and assuming that a 1 > 0 a 1 > 0 a_(1) > 0a_{1}>0has1>0so that the polynomial
μ n = ν = 0 n f ( ν n ) P ν ( x ) P n ν ( 1 x ) a n μ n = ν = 0 n f ν n P ν ( x ) P n ν ( 1 x ) a n mu_(n)=(sum_(nu=0)^(n)f((nu )/(n))P_(nu)(x)P_(n-nu)(1-x))/(a_(n))\mu_{n}=\frac{\sum_{\nu=0}^{n} f\left(\frac{\nu}{n}\right) P_{\nu}(x) P_{n-\nu}(1-x)}{a_{n}}μn=ν=0nf(νn)Pν(x)Pnν(1x)hasn
converges uniformly towards f ( x ) f ( x ) f(x)f(x)f(x)throughout the interval ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1)It is necessary and sufficient that:
(6) lim n ν = 0 n v k P ν ( x ) P n ν ( 1 x ) n k a n = x k (6) lim n ν = 0 n v k P ν ( x ) P n ν ( 1 x ) n k a n = x k {:(6)lim_(n rarr oo)(sum_(nu=0)^(n)v^(k)P_(nu)(x)P_(n-nu)(1-x))/(n^(k)a_(n))=x_(k):}\begin{equation*} \lim _{n \rightarrow \infty} \frac{\sum_{\nu=0}^{n} v^{k} P_{\nu}(x) P_{n-\nu}(1-x)}{n^{k} a_{n}}=x_{k} \tag{6} \end{equation*}(6)limitnν=0nvkPν(x)Pnν(1x)nkhasn=xk
whatever the positive integer k k kkk2.
Let us consider in particular the polynomials (1) arising from the expansion
e x z 1 z = Σ L n ( x ) z n e x z 1 z = Σ L n ( x ) z n e^((xz)/(1-z))=SigmaL_(n)^(')(x)*z^(n)e^{\frac{x z}{1-z}}=\Sigma L_{n}^{\prime}(x) \cdot z^{n}exz1z=ΣLn(x)zn
If L n ( x ) L n ( x ) L^(**)_(n)(x)L^{*}{ }_{n}(x)L*n(x)is the Laguerre polynomial of degree n n nnnwe have
L n ( x ) = L n ( x ) L n 1 ( x ) L n ( x ) = L n ( x ) L n 1 ( x ) L_(n)(x)=L_(n)^(**)(-x)-L_(n-1)^(**)(-x)\mathrm{L}_{n}(x)=\mathrm{L}_{n}^{*}(-x)-\mathrm{L}_{n-1}^{*}(-x)Ln(x)=Ln*(x)Ln1*(x)
We obtain easily
L n ( x ) = e x x n ! d n d x n x n 1 e x = ν = 1 n ( n 1 v 1 ) x ν v ! L n ( x ) = e x x n ! d n d x n x n 1 e x = ν = 1 n ( n 1 v 1 ) x ν v ! L_(n)(x)=(e^(-x)x)/(n!)*(d^(n))/(dx^(n))x^(n-1)e^(x)=sum_(nu=1)^(n)((n-1)/(v-1))(x^(nu))/(v!)L_{n}(x)=\frac{e^{-x} x}{n!} \cdot \frac{d^{n}}{d x^{n}} x^{n-1} e^{x}=\sum_{\nu=1}^{n}\binom{n-1}{v-1} \frac{x^{\nu}}{v!}Ln(x)=exxn!dndxnxn1ex=ν=1n(n1v1)xνv!
Let us now return to the general case and suppose that the series
n = 1 c n z n n = 1 c n z n sum_(n=1)^(oo)c_(n)z^(n)\sum_{n=1}^{\infty} c_{n} z^{n}n=1cnzn
converges inside a circle of radius r r r^(')r^{\prime}rand from the center of origin and let's take r < r r < r r < r^(')r<r^{\prime}r<rAccording to a theorem of Cauchy, there exists a number
M such as
| c n | < M r n n = 1 , 2 , c n < M r n n = 1 , 2 , |c_(n)| < (M)/(r^(n))quad n=1,2,dots\left|c_{n}\right|<\frac{M}{r^{n}} \quad n=1,2, \ldots|cn|<Mrnn=1,2,
And
n = 1 c n z n n = 1 M z n r n = M z r 1 z r ( | z | < r ) n = 1 c n z n n = 1 M z n r n = M z r 1 z r ( | z | < r ) sum_(n=1)^(oo)c_(n)z^(n) <= sum_(n=1)^(oo)(Mz^(n))/(r^(n))=(M(z)/(r))/(1-(z)/(r))quad(|z| < r)\sum_{n=1}^{\infty} c_{n} z^{n} \leq \sum_{n=1}^{\infty} \frac{\mathrm{M} z^{n}}{r^{n}}=\frac{\mathrm{M} \frac{z}{r}}{1-\frac{z}{r}} \quad(|z|<r)n=1cnznn=1Mznrn=Mzr1zr(|z|<r)
We can deduce that for x 0 x 0 x >= 0x \geq 0x0
| P n ( x ) | < 1 r n L n ( M x ) P n ( x ) < 1 r n L n ( M x ) |P_(n)(x)| < (1)/(r^(n))L_(n)(Mx)\left|\mathrm{P}_{n}(x)\right|<\frac{1}{r^{n}} \mathrm{~L}_{n}(\mathrm{M} x)|Pn(x)|<1rn Ln(Mx)
It is easily demonstrated that if x > 0 x > 0 x > 0x>0x>0
L 2 ( x ) L 1 ( x ) > L 3 ( x ) L 2 ( x ) > > L n ( x ) L n 1 ( x ) > L 2 ( x ) L 1 ( x ) > L 3 ( x ) L 2 ( x ) > > L n ( x ) L n 1 ( x ) > (L_(2)(x))/(L_(1)(x)) > (L_(3)(x))/(L_(2)(x)) > cdots > (L_(n)(x))/(L_(n-1)(x)) > cdots\frac{L_{2}(x)}{L_{1}(x)}>\frac{L_{3}(x)}{L_{2}(x)}>\cdots>\frac{L_{n}(x)}{L_{n-1}(x)}>\cdotsL2(x)L1(x)>L3(x)L2(x)>>Ln(x)Ln1(x)>
the report L n L n 1 L n L n 1 (L_(n))/(L_(n-1))\frac{L_{n}}{L_{n-1}}LnLn1Therefore, it has a finite limit. The recurrence relation
x L n = ( n + 1 ) L n + 1 2 n L n + ( n 1 ) L n 1 x L n = ( n + 1 ) L n + 1 2 n L n + ( n 1 ) L n 1 xL_(n)=(n+1)L_(n+1)-2nL_(n)+(n-1)L_(n-1)x L_{n}=(n+1) L_{n+1}-2 n L_{n}+(n-1) L_{n-1}xLn=(n+1)Ln+12nLn+(n1)Ln1
then shows us that
lim n L n L n 1 = 1 x > 0 lim n L n L n 1 = 1 x > 0 lim_(n rarr oo)(L_(n))/(L_(n-1))=1quad x > 0\lim _{n \rightarrow \infty} \frac{L_{n}}{L_{n-1}}=1 \quad x>0limitnLnLn1=1x>0
We deduce from this
lim n | P n ( x ) | n 1 r . lim ¯ n P n ( x ) n 1 r . bar(lim)_(n rarr oo)root(n)(|P_(n)(x)|) <= (1)/(r).\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|\mathrm{P}_{n}(x)\right|} \leq \frac{1}{r} .limitn|Pn(x)|n1r.
Let us now consider a sequence of numbers
λ 0 , λ 1 , λ n , λ 0 , λ 1 , λ n , lambda_(0),lambda_(1),dotslambda_(n),dots\lambda_{0}, \lambda_{1}, \ldots \lambda_{n}, \ldotsλ0,λ1,λn,
ot
lim n | λ n | n = λ lim ¯ n λ n n = λ bar(lim)_(n rarr oo)root(n)(|lambda_(n)|)=lambda\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|\lambda_{n}\right|}=\lambdalimitn|λn|n=λ
As a result, the series
λ 0 P 0 ( x ) + λ 1 P 1 ( x ) + + λ n P n ( x ) + λ 0 P 0 ( x ) + λ 1 P 1 ( x ) + + λ n P n ( x ) + lambda_(0)P_(0)(x)+lambda_(1)P_(1)(x)+cdots+lambda_(n)P_(n)(x)+cdots\lambda_{0} \mathrm{P}_{0}(x)+\lambda_{1} \mathrm{P}_{1}(x)+\cdots+\lambda_{n} \mathrm{P}_{n}(x)+\cdotsλ0P0(x)+λ1P1(x)++λnPn(x)+
converges absolutely regardless of λ < r λ < r lambda < r^(')\lambda<r^{\prime}λ<rAnd x 0 x 0 x >= 0x \geq 0x0.
1931

Related Posts