Separation of components from a scale mixture of Gaussian white noises


The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vtreferred to as volatility.

The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated.

We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.


Călin Vamoş

Maria Crăciun


Computational methods; superstatistics; time series analysis; volatility

Paper coordinates

C. Vamoş, M. Crăciun, Separation of components from a scale mixture of Gaussian white noises, Physical Review E, vol. 81 (2010) article id. 051125,
doi: 10.1103/PhysRevE.81.051125


see the expansion block below.



About this paper


Physical Review E

Publisher Name

American Physical Society

Print ISSN


Online ISSN


Google Scholar profile

google scholar link

[1] C. Beck and E. G. D. Cohen, Physica A 322, 267 2003.
[2] R. F. Engle, Econometrica 50, 987 1982.
[3] T. Bollerslev, J. Econometrics 31, 307 1986.
[4] J. Voit, The Statistical Mechanics of Financial Markets, 3rd ed. Springer, Berlin, 2005.
[5] E. Van der Straeten and C. Beck, Phys. Rev. E 80, 036108 2009.
[6] C. Beck, Braz. J. Phys. 39, 357 2009.
[7] A. Gerig, J. Vicente, and M. A. Fuentes, Phys. Rev. E 80, 065102R 2009.
[8] D. F. Andrews and C. L. Mallows, J. R. Stat. Soc. Ser. B Methodol. 36, 99 1974.
[9] S. Gheorghiu and M.-O. Coppens, Proc. Natl. Acad. Sci. U.S.A. 101, 15852 2004.
[10] S.-H. Poon, A Practical Guide to Forecasting Financial Market Volatility Wiley Finance, Chichester, 2005.
[11] T. G. Andersen, T. Bollerslev, and F. X. Diebold, NBER Technical Working Paper No. 279, 2002 unpublished.
[12] J. Longerstaey and P. Zangari, Risk Metrics—Technical Document, 4th ed. Morgan Guaranty Trust Co., New York, 1996.
[13] T. G. Andersen and T. Bollerslev, Int. Econom. Rev. 39, 885 1998.
[14] Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, and H. E. Stanley, Phys. Rev. E 60, 1390 1999.
[15] P. J. Brockwell and R. A. Davies, Time Series: Theory and Methods Springer Verlag, New York, 1996.
[16] P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley, Phys. Rev. E 60, 5305 1999.
[17] R. N. Mantegna and H. E. Stanley, Nature London 376, 46 1995.
[18] C. Stărică and C. Granger, Rev. Econ. Stat. 87, 503 2005.
[19] J. C. Escanciano and I. N. Lobato, J. Econometrics 151, 140 2009.
[20] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting and Control, 3rd ed. Prentice-Hall, Upper Saddle River, NJ, 1994.
[21] K. Fukuda, H. E. Stanley, and L. A. Nunes Amaral, Phys. Rev. E 69, 021108 2004.
[22] P. Bernaola-Galván, P. Ch. Ivanov, L. A. Nunes Amaral, and H. E. Stanley, Phys. Rev. Lett. 87, 168105 2001.
[23] A. C. Silva, R. E. Prange, and V. M. Yakovenko, Physica A 344, 227 2004; H. Kleinert and X. J. Chen, ibid. 383, 513 2007.



Related Posts