Separation of components from a scale mixture of Gaussian white noises

Abstract

The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vtreferred to as volatility.

The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated.

We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.

Authors

Călin Vamoş

Maria Crăciun

Keywords

Computational methods; superstatistics; time series analysis; volatility

Paper coordinates

C. Vamoş, M. Crăciun, Separation of components from a scale mixture of Gaussian white noises, Physical Review E, vol. 81 (2010) article id. 051125,
doi: 10.1103/PhysRevE.81.051125

References

see the expansion block below.

PDF

soon

About this paper

Journal

Physical Review E

Publisher Name

American Physical Society

Print ISSN

?

Online ISSN

?

Google Scholar profile

google scholar link

Related Posts

Menu