[1] M. Craciun, Approximation operators constructed by means of Sheffer sequences, Rev. Anal. Numer. Theor. Approx. 30 (2) (2001) 135–150.
[2] A. Di Bucchianico, Probabilistic and analytical aspects of the umbral calculus, Vol. 119 of CWI Tracts, CWI, Amsterdam, 1997.
[3] F. Altomare, M. Campiti, Korovkin-type approximation theory and its applications, Walter de Gruyter & Co., Berlin, 1994, appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff.
[4] J. Goldstein, Some applications of the law of large numbers, Bol. Soc. Brasil. Mat. 6 (1) (1975) 25–38.
[5] D. D. Stancu, Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Roumaine Math. Pures Appl. 14 (1969) 673–691.
[6] C. Manole, Approximation operators of binomial type, Seminar on Numerical and Statistical Calculus 9 (1987) 93–98.
[7] P. Sablonniere, Positive Bernstein-Sheffer operators, J. Approx. Theory 83 (3) (1995) 330–341.
[8] A. Di Bucchianico, D. Loeb, A selected survey of umbral calculus, Electron. J. Combin. 2 (1995 / 2001) Dynamic Survey 3, 28 pp. (electronic).
[9] G.-C. Rota, D. Kahaner, A. Odlyzko, On the foundations of combinatorial theory VII. Finite operator calculus, J. Math. Anal. Appl. 42 (1973) 684–760.
[10] S. Lewanowicz, P. Wozny, Generalized Bernstein polynomials, BIT 44 (1) (2004) 63–78.
[11] A. Lupas, A q-analogue of the Bernstein operator, in: Seminar on Numerical and Statistical Calculus (Cluj-Napoca, 1987), Univ. “Babes-Bolyai”, Cluj, 1987, pp. 85–92.
[12] G. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1-4) (1997) 511–518, the heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin.
[13] T. Popoviciu, Remarques sur les polynomes binomiaux, Bul. Soc. Sti. Cluj 6 (1931) 146–148, zbl. 2, 398.
[14] D. D. Stancu, M. R. Occorsio, On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numer. Theor. Approx. 27 (1) (1998) 167–181.
[15] A. Lupas, Approximation operators of binomial type, in: New developments in approximation theory (Dortmund, 1998), Birkhauser, Basel, 1999, pp. 175–198.
[16] O. Agratini, Binomial polynomials and their applications in approximation theory, Conf. Semin. Mat. Univ. Bari 281 (2001) 1–22.
[17] V. Mihesan, Positive linear operators, Editura U.T.Pres, Cluj-Napoca, Romania, 2004.
[18] G. Moldovan, Discrete convolutions and linear positive operators. I, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 15 (1972) 31–44 (1973).
[19] L. Lupas, A. Lupas, Polynomials of binomial type and approximation operators, Studia Univ. Babes-Bolyai Math. 32 (4) (1987) 61–69.
[20] V. Mihesan, Linear and positive operators of binomial type, in: Proceedings of the International Symposium Dedicated to the 75th anniversary of D.D. Stancu, Cluj-Napoca, 2002, pp. 276–283.
[21] M. Craciun, Compound operators constructed with binomial and Sheffer sequences, Revue d’analyse numerique et de theorie de l’approximation 32 (2) (2003) 135 144.
[22] M. Craciun, On compound operators depending on s parameters, Revue d’analyse numerique et de theorie de l’approximation 33 (1) (2004) 51–60.
[23] S. Bernstein, Demonstration du theoreme de Weierstrass fondee sur la calcul de probabilites, Commun. Soc. Math. Kharkow 13 (2) (1912) 1–2.
[24] N. Johnson, S. Kotz, A. Kemp, Univariate discrete distributions, 2nd Edition, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons Inc., New York, 1992, a Wiley-Interscience Publication.
[25] D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl. 13 (1968) 1173–1194.
[26] D. D. Stancu, Approximation properties of a class of linear positive operators, Studia Univ. Babes-Bolyai Ser. Math.-Mech. 15 (fasc. 2) (1970) 33–38.
[27] B. Della Vecchia, On the approximation of functions by means of the operators of D.D. Stancu, Studia Univ. Babes-Bolyai Math. 37 (1) (1992) 3–36.
[28] A. Lupas, L. Lupas, Properties of Stancu operators, in: Proceedings of the International Symposium Dedicated to the 75th anniversary of D.D. Stancu, Cluj-Napoca, 2002, pp. 258–275.
[29] C. A. Charalambides, Abel series distributions with applications to fluctuations of sample functions of stochastic processes, Comm. Statist. Theory Methods 19 (1) (1990) 317–335.
[30] P. Consul, Some new characterizations of discrete Lagrangian distributions, in: G. Patil, S. Kotz, J. Ord (Eds.), Statistical distributions in scientific work,Vol. 3, Reidel, 1975, pp. 279–290.
[31] E. W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma (2) 5 (1964) 77–84.
[32] C. Manole, Dezvoltari in serii de polinoame Appell generalizate cu aplicatii la aproximarea functiilor [English: Expansions in series of generalized Appell polynomials with applications to the approximation of functions], Ph.D. thesis, Babes-Bolyai University, Cluj-Napoca (1984).
[33] P. Consul, S. Mittal, A new urn with predetermined strategy, Biom. Z. 17 (1975) 67–75.
[34] C. Manole, Polinoame Appell si operatori liniari si pozitivi [English: Appell polynomials and linear and positive operators], Buletin Stiintific I.I.S. Sibiu 6 (1982) 26–43.
[35] P. Consul, A simple urn model dependent on predetermined strategy, Sankhya B36 (1974) 391–399.
[36] G. Moldovan, Generalizari ale operatorilor lui S.N. Bernstein [English: Generalizations of Bernstein operators], Ph.D. thesis, Babes-Bolyai University, Cluj-Napoca (1971).
[37] G. Moldovan, Sur la convergence de certains operateurs convolutifs positifs, C. R. Acad. Sci. Paris Ser. A-B 272 (1971) A1311–A1313.
[38] E. Popa, Note on some approximation operators, in: Proceedings of the International Symposium Dedicated to the 75th anniversary of D.D. Stancu, Cluj-Napoca, 2002, pp. 411–417.
[39] G. Markowsky, Differential operators and the theory of binomial enumeration, J. Math. Anal. Appl. 63 (1978) 145–155.
[40] S. Roman, The Umbral Calculus, Academic Press, 1984.
[41] A. Di Bucchianico, D. Loeb, Polynomials of binomial type with persistent roots, Stud. Appl. Math. 99 (1996) 39–58.
[42] S. Roman, More on the umbral calculus, with emphasis on the q-umbral calculus, J. Math. Anal. Appl. 107 (1985) 222–254.
[43] G. Phillips, On generalized Bernstein polynomials, in: Approximation and optimization, Vol. I (Cluj-Napoca, 1996), Transilvania, Cluj-Napoca, 1997, pp. 335–340.