Construction of upper and lower solutions with applications to singular boundary value problems

Abstract

An upper and lower solution theory is presented for the Dirichlet boundary value problem \(y^{\prime\prime}+f(t,y,y^{\prime})=0\), \(0<t <1\) with \(y(0)=y(1)=0\). Our nonlinearity may be singular in its dependent variable and is allowed to change sign.

Authors

R.P. Agarwal

D. O’Regan

Radu Precup
Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

?

Paper coordinates

R.P. Agarwal, D.O. Regan, R. Precup, Construction of upper and lower solutions with applications to singular boundary value problems,  J. Comput. Anal. Appl. 7 (2005), 205-221.

PDF

??

About this paper

Journal

J. Comput. Anal. Appl.

Publisher Name

EUDOXUS PRESS, LLC

DOI
Print ISSN
Online ISSN

MR2223477, Zbl 1085.34016

google scholar link

Related Posts