[1] Attinger, S., Dentz, M., H. Kinzelbach, and W. Kinzelbach (1999), Temporal behavior of a solute cloud in a chemically heterogeneous porous medium, J. Fluid Mech., 386, 77-104.
CrossRef (DOI)
[2] Bellin, A., M. Pannone, A. Fiori, and A. Rinaldo (1996), On transport in porous formations characterized by heterogeneity of evolving scales, Water Resour. Res., 32, 3485-3496.
CrossRef (DOI)
[3] Cintoli, S., S. P. Neuman, and V. Di Federico (2005), Generating and scaling fractional Brownian motion on finite domains, Geophys. Res. Lett. 32, L08404,
CrossRef (DOI).
[4] Dagan, G. (1994), The significance of heterogeneity of evolving scales and of anomalous diffusion to transport in porous formations, Water Resour. Res., 30, 3327-3336, 1994.
CrossRef (DOI)
[5] Dagan, G. (1987), Theory of solute transport by groundwater, Annu. Rev. Fluid Mech., 19, 183-215.
CrossRef (DOI)
[6] Dagan, G. (1988), Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers, Water Resour. Res., 24, 1491-1500.
CrossRef (DOI)
[7] Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000), Temporal behavior of a solute cloud in a heterogeneous porous medium 1. Point-like injection, Water Resour. Res., 36, 3591-3604.
CrossRef (DOI)
[8] Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000), Temporal behavior of a solute cloud in a heterogeneous porous medium 2. Spatially extended injection, Water Resour. Res., 36, 3605-3614.
CrossRef (DOI)
[9] Di Federico, V., and S. P. Neuman (1997), Scaling of random fields by means of truncated power variograms and associated spectra, Water Resour. Res., 33, 1075-1085.
CrossRef (DOI)
[10] Fiori, A. (1996), Finite Peclet extensions of Dagan’s solutions to transport in anisotropic heterogeneous formations, Water Resour. Res., 32, 193-198.
CrossRef (DOI)
[11] Fiori, A. (2001), On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity, Water Resour. Res., 37, 235-242.
CrossRef (DOI)
[12] Fiori, A., and G. Dagan (2000), Concentration fluctuations in aquifer transport: A rigorous first-order solution and applications, J. Contam. Hydrol., 45, 139-163.
CrossRef (DOI)
[13] Gelhar, L. W. (1986), Stochastic subsurface hydrology from theory to applications, Water Resour. Res., 22, 135S-145S.
CrossRef (DOI)
[14] Gelhar, L. W., and C. L. Axness (1983), Three-dimensional stochastic analysis of macrodispersion in aquifers, textit Water Resour. Res., 19, 161-180.
CrossRef (DOI)
[15] Gradshteyn, I. S., and I. M. Ryzhik (2007), Table of Integrals, Series, and Products, Elsevier, Amsterdam.
[16] Jeon, J.-H., and R. Metzler (2010), Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries, Phys. Rev. E 81, 021103,
CrossRef (DOI)
[17] McLaughlin, D., and F. Ruan (2001), Macrodispersivity and large-scale hydrogeologic variability, Transp. Porous Media, 42, 133-154.
CrossRef (DOI)
[18] Papoulis, A., and S. U. Pillai (2009), Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York.
[19] Radu, F. A., N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C-H. Park, and S. Attinger (2011), Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study, Adv. Water Resour. 34, 47–61.
CrossRef (DOI)
[20] Ross, K., and S. Attinger (2010), Temporal behaviour of a solute cloud in a fractal heterogeneous porous medium at different scales, paper presented at EGU General Assembly 2010, Vienna, Austria, 02-07 May 2010.
[21] Schwarze, H., U. Jaekel, and H. Vereecken (2001), Estimation of macrodispersivity by different approximation methods for flow and transport in randomly heterogeneous media, Transp. Porous Media, 43, 265-287.
[22] Suciu N. (2010), Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields, Phys. Rev. E, 81, 056301,
CrossRef (DOI)
[23] Suciu, N. (2014), Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour. 69, 114–133.
CrossRef (DOI)
[24] Suciu, N., C. Vamo¸s, J. Vanderborght, H. Hardelauf, and H. Vereecken (2006), Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res., 42, W04409,
CrossRef (DOI)
[25] Suciu N., C. Vamos, F. A. Radu, H. Vereecken, and P. Knabner (2009), Persistent memory of diffusing particles, Phys. Rev. E, 80, 061134,
CrossRef (DOI)
[26] Suciu, N., S. Attinger, F.A. Radu, C. Vamos, J. Vanderborght, H. Vereecken, P. Knabner (2011), Solute transport in aquifers with evolving scale heterogeneity, Preprint No. 346, Mathematics Department, Friedrich-Alexander University Erlangen-Nuremberg
(http://fauams5.am.uni-erlan-gen.de/papers/pr346.pdf).
CrossRef (DOI)
[27] Suciu, N., F.A. Radu, A. Prechtel, F. Brunner, and P. Knabner (2013), A coupled finite element-global random walk approach to advectiondominated transport in porous media with random hydraulic conductivity, J. Comput. Appl. Math. 246, 27–37.
CrossRef (DOI)
[28] Suciu, N., F.A. Radu, S. Attinger, L. Schuler, Knabner (2014), A FokkerPlanck approach for probability distributions of species concentrations transported in heterogeneous media, J. Comput. Appl. Math., in press,
CrossRef (DOI)
[29] Vamos, C., N. Suciu, H. Vereecken, J. Vanderborght, and O. Nitzsche (2001), Path decomposition of discrete effective diffusion coefficient, Internal Report ICG-IV. 00501, Research Center Jülich.
[30] Vamos, C., N. Suciu, and H. Vereecken (2003), Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comput. Phys., 186, 527-544,
CrossRef (DOI)