Abstract
We study the convergence of an iterative method for solving the equation (fleft( xright) =0, f:Isubseteq mathbb{Rrightarrow R}). The iterative method is obtained by the Hermite inverse interpolation polynomial. We show that the convergence order of this method is given by the unique positive solution of a polynomial equation with coefficients given by the multiplicity orders. We consider the particular instance of two interpolation nodes and we determine the resulted methods.
Authors
Crăciun Iancu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
La resolution des équations par interpolation inverse de type Hermite
English translation of the title
Solving equations by Hermite inverse interpolation
Keywords
Hermite interpolation; inverse interpolation; nonlinear equations in R; iterative methods; multistep method; convergence order
Cite this paper as:
C. Iancu, I. Păvăloiu, La resolution des équations par interpolation inverse de type Hermite, Mathematica (Cluj), 26(49) (1984) no. 2, pp. 115-123 (in French).
About this paper
Journal
Mathematica
Publisher Name
DOI
Not available yet.
Print ISSN
Not available yet.
Online ISSN
Not available yet.
References
[1] I.G. Berezin, P.N. Zidkov, Metody vycislenii, I. Moskow, 1962.
[2] Gh. Coman, Some practical approximation methods for nonlinear equations, Anal. Numer. Theor. Approx., 11, 1-2, (1982), 41–48.
[3] M.A. Ostrowski, Solution of Equations and Systems of Equations, Academic Press New York – London, 1960.
[4] I. Pavaloiu, Rezolvarea ecua¸iilor prin interpolare, Ed. Dacia, 1981.
[5] I. Pavaloiu, Introducere in aproximarea solutiilor ecuatiilor, Ed. Dacia, 1976.
[6] D.D. Stancu, Asupra formulei de interpolare a lui Hermite si a unor aplicatii ale acesteia, Studii ¸si Cercet. Mat. (Cluj), 3-4 VIII, (1957), 339-355.
[7] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall Series in Automatic Computation 1964.
[8] B.A. Turowicz, Sur les derivees d’ordre superiour d’une fonction inverse, Colloq. Math., (1959), 83–87.