Abstract
Let \(X,Y\) be two Banach spaces and \(Z=X\times Y\). We consider the system of nonlinear equations \[x=\varphi \left( x,y\right),\\ y=\psi \left(x,y\right),\] where \(\varphi:Z\rightarrow X\), \(\psi:Z\rightarrow Y\). Assuming that \(\varphi\) and \(\psi \ \) satisfy Lipschitz conditions we study the convergence of the Gauss-Seidel type method \[x_{n}=\varphi \left(x_{n-1},y_{n-1}\right), \\ y_{n}=\psi \left( x_{n},y_{n-1}\right) .\] The obtained result is applied to the solving of a linear system, for which the matrix is splitted in four submatrices. We illustrate the obtained results for some numerical examples.
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
La résolution des systèmes d’équations opérationnelles à l’aide des méthodes itératives
English translation of the title
Solving the systems of operator equations by iterative methods
Keywords
Gauss-Seidel method, system of equations in Banach spaces, linear systems
Cite this paper as:
I. Păvăloiu, La résolution des systèmes d’équations opérationnelles à l’aide des méthodes itératives, Mathematica, 11(34) (1969), pp. 137-141 (in French).
Scanned paper (in French).
PDF-Latex version of the paper. (English translation)
About this paper
Journal
Mathematica
Publisher Name
Academia R.S. Romania
DOI
Not available yet.
Print ISBN
Not available yet.
Online ISBN
Not available yet.
References
[1] I. Pavaloiu, Observatii asupra rezolvarii sistemelor de ecuatii cu ajutorul procedeelor iterative, Studii si Cercetari Matematice, 19 (1967) no. 9, 1289–1298 (in Romanian) [English translation of the title: Remarks on solving the systems of equations by iterative methods].
Google Scholar Profile