Solving the systems of operator equations by iterative methods

Abstract

Let \(X,Y\) be two Banach spaces and \(Z=X\times Y\). We consider the system of nonlinear equations \[x=\varphi \left( x,y\right),\\ y=\psi \left(x,y\right),\] where \(\varphi:Z\rightarrow X\), \(\psi:Z\rightarrow Y\). Assuming that \(\varphi\) and \(\psi \ \) satisfy Lipschitz conditions we study the convergence of the Gauss-Seidel type method \[x_{n}=\varphi \left(x_{n-1},y_{n-1}\right), \\ y_{n}=\psi \left( x_{n},y_{n-1}\right) .\] The obtained result is applied to the solving of a linear system, for which the matrix is splitted in four submatrices. We illustrate the obtained results for some numerical examples.

Authors

Ion Păvăloiu

Title

Original title (in French)

La résolution des systèmes d’équations opérationnelles à l’aide des méthodes itératives

English translation of the title

Solving the systems of operator equations by iterative methods

Keywords

Gauss-Seidel method, system of equations in Banach spaces, linear systems

References

[1] I. Pavaloiu, Observatii asupra rezolvarii sistemelor de ecuatii cu ajutorul procedeelor iterative, Studii si Cercetari Matematice, 19 (1967) no. 9, 1289–1298 (in Romanian) [English translation of the title: Remarks on solving the systems of equations by iterative methods].

PDF

About this paper

Cite this paper as:

I. Păvăloiu, La résolution des systèmes d’équations opérationnelles à l’aide des méthodes itératives, Mathematica, 11(34) (1969), pp. 137-141 (in French).

Journal

Mathematica

Publisher Name

Academia R.S. Romania

DOI

Not available yet.

Print ISBN

Not available yet.

Online ISBN

Not available yet.

Google Scholar Profile

Related Posts

No results found

Menu