Some properties of solutions to a planar system of nonlinear differential equations

Abstract

In this paper we present for the solutions of a planar system of differential equations, extremal principle, Nicolescu-type and Butlewski-type separation theorems. Some applications and examples are given.

Authors

V. Ilea
(Babes Bolyai Univ.)

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,

Keywords

Nonlinear second order differential system; extremal principle; zeros of solutions; Sturm-type theorem; Nicolescu-type theorem; Butlewski-type theorem

Cite this paper as:

V. Ilea, D. Otrocol, Some properties of solutions to a planar system of nonlinear differential equations, Studia Univ. Babes-Bolyai Math., 63 (2018) no. 2, pp. 225-234.
doi: 10.24193/subbmath.2018.2.06

PDF

About this paper

Journal

Studia Universitatis Babes-Bolyai Mathematica

Publisher Name

Univ. Babes-Bolyai, Romania

Print ISSN

0252-1938

Online ISSN

2065-961X

MR

MR3819870

ZBL

Google Scholar

[1] Butlewski, Z., Sur les zeros des integrales reelles des equations differentielles lineaires, Mathematica, 17(1941), 85-110.

[2] Hartman, P., Ordinary differential equations, J. Wiley and Sons, New York, 1964.

[3] Ilea, V.A., Otrocol, D., Rus, I.A., Some properties of solutions of the homogeneous nonlinear second order differential equations, Mathematica, 57(80)(2017), no. 1-2, 38- 43.

[4] Muresan, A.S., Tonelli’s lemma and applications, Carpathian J. Math., 28(2012), no. 1, 103-110.

[5] Nicolescu, M., Sur les theoremes de Sturm, Mathematica, 1(1929), 111-114.

[6] Reid, W.T., Sturmian theory for ordinary differential equations, Springer, Berlin, 1980.

[7] Rus, I.A., On the zeros of solutions of a system with two first order differential equations, (Romanian), Studii si Cercetari de Matematica (Cluj), 14(1963), 151-156.

[8] Rus, I.A., Separation theorems for the zeros of some real functions, Mathematica, 27(1985), no. 1, 43-46.

[9] Rus, I.A., Differential equations, integral equations and dinamical systems, (Romanian), Transilvania Press, Cluj-Napoca, 1996.

[10] Sansone, G., Equazioni differenziali nel compo reale, Parte Prima, Bologna, 1948.

[11] Sansone, G., Equazioni differenziali nel compo reale, Parte Seconda, Bologna, 1949.

[12] Swanson, C.A., Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968.

[13] Tonelli, L., Un’osservazione su un teorema di Sturm, Boll. Union. Mat. Italiana, 6(1927), 126-128.

Some properties of solutions of the nonlinear first order system of differential equation

Veronica Ilea “Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, M. Kogălniceanu St. 1, RO-400084 Cluj-Napoca, Romania vdarzu@math.ubbcluj.ro    Diana Otrocol ∗∗Technical University of Cluj-Napoca, Memorandumului St. 28, 400114, Cluj-Napoca, Romania Diana.Otrocol@math.utcluj.ro ∗∗“T. Popoviciu” Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania
Abstract.

In this paper we present for the solutions of the nonlinear first order system of differential equation, extremal principle, Nicolescu-type and Butlewski-type separation theorems. Some applications and examples are given.

Key words and phrases:
Nonlinear second order differential system, extremal principle, zeros of solutions, Sturm-type theorem, Nicolescu-type theorem, Butlewski-type theorem.
1991 Mathematics Subject Classification:
34A12, 34C10, 34A34.

1. Introduction

Let F,GC([a,b]×3).F,G\in C([a,b]\times\mathbb{R}^{3}). We consider the following first order system of differential equation

{F(x,y,z,y)=0G(x,y,z,z)=0.\left\{\begin{array}[c]{l}F(x,y,z,y^{\prime})=0\\ G(x,y,z,z^{\prime})=0.\end{array}\right. (1.1)

In this paper by a solution of the system (1.1) we understand a function (y,z)C1([a,b],2)(y,z)\in C^{1}([a,b],\mathbb{R}^{2}) which satisfies (1.1).

For a function u:[a,b]u:[a,b]\rightarrow\mathbb{R} we denote by ZuZ_{u} the zero set of uu, Zu:={x[a,b]|u(x)=0}Z_{u}:=\{x\in[a,b]|\ u(x)=0\}.

Let us recall now some essential definitions and fundamental results.

Definition 1.1.

A function f:D(D2)f:D\rightarrow\mathbb{R}\ (D\subset\mathbb{R}^{2}) is called homogeneous of degree nn if f(tu,tv)=tnf(u,v),f(tu,tv)=t^{n}f(u,v), for each (u,v)D(u,v)\in D and t>0t>0.

The linear case of (1.1) is the following system

{y+p1(x)y+q1(x)z=0z+p2(x)y+q2(x)z=0\left\{\begin{array}[c]{c}y^{\prime}+p_{1}(x)y+q_{1}(x)z=0\\ z^{\prime}+p_{2}(x)y+q_{2}(x)z=0\end{array}\right. (1.2)

with pi,qiC[a,b]p_{i},q_{i}\in C[a,b], i=1,2i=1,2.

For the system (1.2) the following properties of the solution are well known (see [9], [10], [11], [6], [2], [12]).

Theorem 1.2.

If (y,z)0(y,z)\neq 0 is a solution of (1.2) then we have:

  • (i)

    ZyZz=;Z_{y}\cap Z_{z}=\emptyset;

  • (ii)

    if q1(x)0,p2(x)0,x[a,b],q_{1}(x)\neq 0,\ p_{2}(x)\neq 0,\ \forall x\in[a,b], then the zeros of yy and zz are simple and isolated on [a,b][a,b].

Theorem 1.3.

(Nicolescu’s theorem [5]) We suppose that q1(x)p2(x)<0,q_{1}(x)p_{2}(x)<0, x[a,b].\forall x\in[a,b]. If (y,z)0(y,z)\neq 0 is a solution of (1.2), then the zeros of yy and zz separate each other on [a,b][a,b].

Theorem 1.4.

(Butlewski’s theorem [1]) We suppose that pi,qiC[a,b]p_{i},q_{i}\in C[a,b], i=1,2i=1,2 and q1(x)0q_{1}(x)\neq 0 (p2(x)0),(p_{2}(x)\neq 0), x[a,b].\forall x\in[a,b]. If (y1,z1)(y_{1},z_{1}) and (y2,z2)(y_{2},z_{2}) are two linear independent solutions of (1.2), then the zeros of y1y_{1} and y2y_{2} (z1(z_{1}\ and z2)z_{2}) separate each other on [a,b][a,b].

The aim of this paper is to extend the above results to the solutions of (1.1). For some results in this directions see [7], [8], [4] and [3].

The organization of this paper is as follows. In Section 2 we prove some extremal principles for nonlinear first order system of differential equations and in Section 3 we discussed some properties of the zeros of the components of the solutions for such systems and in the end we prove Nicolescu-type and Butlewski-type separation theorems, by using Tonelli’s Lemmas. The results presented in this paper generalize the main results in [3].

2. Extremal principles

We consider the system (1.1) with F,GC([a,b]×3)F,G\in C([a,b]\times\mathbb{R}^{3}). We have the following extremal principle for the solutions of (1.1).

Theorem 2.1.

(Extremal principle) Let (y,z)C1([a,b],2)(y,z)\in C^{1}([a,b],\mathbb{R}^{2}) be a solution of (1.1) and we suppose that:

  • (i)

    F(x,,,0)F(x,\cdot,\cdot,0) and G(x,,,0)G(x,\cdot,\cdot,0) are homogeneous for all x[a,b]x\in[a,b];

  • (ii)

    F(x,y,,0)F(x,y,\cdot,0)\ andG(x,,z,0)\ G(x,\cdot,z,0) are increasing,x[a,b];,\ \forall x\in[a,b];

  • (iii)

    F(x,1,1,0)<0F(x,1,1,0)<0,G(x,1,1,0)<0,x[a,b]\ G(x,1,1,0)<0,\ \forall x\in[a,b].

Then:

  • (a)

    If there exists x0[a,b]x_{0}\in[a,b] such that max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}>0,\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}>0, then x0{a,b};x_{0}\in\{a,b\};

  • (b)

    If there exists x0[a,b]x_{0}\in[a,b] such that min{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}<0,\min\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}<0, then x0{a,b}.x_{0}\in\{a,b\}.

Proof.

(a) We suppose that x0]a,b[.x_{0}\in]a,b[.\ Let max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}=y(x0)>0.\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}=y(x_{0})>0.\ We shall show that this leads to a contradiction.

Since yC1[a,b]y\in C^{1}[a,b] we have that y(x0)=0.y^{\prime}(x_{0})=0. From (1.1) we have

F(x0,y(x0),z(x0),0)=0.F(x_{0},y(x_{0}),z(x_{0}),0)=0.

Using (i) and (ii) we obtain

0\displaystyle 0 =F(x0,y(x0),z(x0),0)F(x0,y(x0),y(x0),0)=\displaystyle=F(x_{0},y(x_{0}),z(x_{0}),0)\leq F(x_{0},y(x_{0}),y(x_{0}),0)=
=y(x0)F(x0,1,1,0)<0.\displaystyle=y(x_{0})F(x_{0},1,1,0)<0.

So, x0{a,b}.\ x_{0}\in\{a,b\}.

Now let max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}=z(x0)>0\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}=z(x_{0})>0.

Since zC1[a,b]z\in C^{1}[a,b] we have that z(x0)=0.z^{\prime}(x_{0})=0. From (1.1) we have

G(x0,y(x0),z(x0),0)=0.G(x_{0},y(x_{0}),z(x_{0}),0)=0.

Using (i) and (ii) we obtain

0\displaystyle 0 =G(x0,y(x0),z(x0),0)G(x0,z(x0),z(x0),0)=\displaystyle=G(x_{0},y(x_{0}),z(x_{0}),0)\leq G(x_{0},z(x_{0}),z(x_{0}),0)=
=z(x0)G(x0,1,1,0)<0.\displaystyle=z(x_{0})G(x_{0},1,1,0)<0.

So, x0{a,b}.\ x_{0}\in\{a,b\}.

(b) Let min{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}=y(x0)<0.\min\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}=y(x_{0})<0.\ We suppose that x0]a,b[x_{0}\in]a,b[. Analogous, we prove that this leads to a contradiction. ∎

Corollary 2.2.

Let (y,z)C1([a,b],2)(y,z)\in C^{1}([a,b],\mathbb{R}^{2}) be a solution of the following system

{p1y+q1zy=0p2y+q2zz=0\left\{\begin{array}[c]{c}p_{1}y+q_{1}z-y^{\prime}=0\\ p_{2}y+q_{2}z-z^{\prime}=0\end{array}\right.

and we suppose that p2>0,q1>0,p1+q1<0p_{2}>0,q_{1}>0,\ p_{1}+q_{1}<0 and p2+q2<0.p_{2}+q_{2}<0. Then:

  • (a)

    If there exists x0[a,b]x_{0}\in[a,b] such that max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}>0,\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}>0, then x0{a,b};x_{0}\in\{a,b\};

  • (b)

    If there exists x0[a,b]x_{0}\in[a,b] such that min{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}<0,\min\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}<0, then x0{a,b}.x_{0}\in\{a,b\}.

Example 2.3.

We consider on [0,1][0,1] the system

{2y+zy=0y4zz=0\left\{\begin{array}[c]{c}-2y+z-y^{\prime}=0\\ y-4z-z^{\prime}=0\end{array}\right.

with initial conditions y(0)=z(0)=1.y(0)=z(0)=1. We have q1=p2=1,p1+q1<0,p2+q2<0.q_{1}=p_{2}=1,\ p_{1}+q_{1}<0,\ p_{2}+q_{2}<0.\ From Figure 1 one can see that the conditions of Corollary 2.2 hold.

Refer to caption
Figure 1. Plot of max{y(x),z(x)}\max\left\{y(x),z(x)\right\} as function of xx
Theorem 2.4.

Let (y,z)C1([a,b],2)(y,z)\in C^{1}([a,b],\mathbb{R}^{2}) be a solution of the following system

{f(x,y,z)y=0g(x,y,z)z=0\left\{\begin{array}[c]{c}f(x,y,z)-y^{\prime}=0\\ g(x,y,z)-z^{\prime}=0\end{array}\right.

and we suppose that

  • (i)

    ff and gg are homogeneous with respect to the last two arguments;

  • (ii)

    f(x,y,)f(x,y,\cdot)\ andg(x,,z)\ g(x,\cdot,z) are increasing,x[a,b];,\ \forall x\in[a,b];

  • (iii)

    f(x,1,1)<0f(x,1,1)<0,g(x,1,1)<0,x[a,b]\ g(x,1,1)<0,\ \forall x\in[a,b].

Then:

  • (a)

    If there exists x0[a,b]x_{0}\in[a,b] such that max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}>0,\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}>0, then x0{a,b};x_{0}\in\{a,b\};

  • (b)

    If there exists x0[a,b]x_{0}\in[a,b] such that min{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}<0,\min\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}<0, then x0{a,b}.x_{0}\in\{a,b\}.

Proof.

The system satisfies the condition from Theorem 2.1. ∎

Corollary 2.5.

Let (y,z)C1([a,b],2)(y,z)\in C^{1}([a,b],\mathbb{R}^{2}) be a solution of the following system

{p1y3+q1z3y=0p2y3+q2z3z=0\left\{\begin{array}[c]{c}p_{1}y^{3}+q_{1}z^{3}-y^{\prime}=0\\ p_{2}y^{3}+q_{2}z^{3}-z^{\prime}=0\end{array}\right.

and we suppose that p2>0,q1>0,p1+q1<0p_{2}>0,q_{1}>0,\ p_{1}+q_{1}<0 and p2+q2<0.p_{2}+q_{2}<0.

Then:

  • (a)

    If there exists x0[a,b]x_{0}\in[a,b] such that max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}>0,\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}>0, then x0{a,b};x_{0}\in\{a,b\};

  • (b)

    If there exists x0[a,b]x_{0}\in[a,b] such that min{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}<0,\min\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}<0, then x0{a,b}.x_{0}\in\{a,b\}.

Example 2.6.

We consider on [0,1][0,1] the system

{5y3+2z3y=02y36z3z=0\left\{\begin{array}[c]{c}-5y^{3}+2z^{3}-y^{\prime}=0\\ 2y^{3}-6z^{3}-z^{\prime}=0\end{array}\right.

with initial conditions y(0)=z(0)=1.y(0)=z(0)=1. We have q1=2,p2=2,p1+q1<0,p2+q2<0.q_{1}=2,p_{2}=2,\ p_{1}+q_{1}<0,\ p_{2}+q_{2}<0.\ From Figure 2 one can see that the conditions of Corollary 2.5 hold.

Refer to caption
Figure 2. Plot of max{y(x),z(x)}\max\left\{y(x),z(x)\right\} as function of xx

In the end of this section, we consider the following functional-differential system

{F(x,y,y(g),z,y)=0G(x,y,z,z(h),z)=0,\left\{\begin{array}[c]{l}F(x,y,y(g),z,y^{\prime})=0\\ G(x,y,z,z(h),z^{\prime})=0,\end{array}\right. (2.1)
Theorem 2.7.

Let (y,z)C1([a,b],2)(y,z)\in C^{1}([a,b],\mathbb{R}^{2}) be a solution of the system (2.1), where g,hC[a,b]),g(x)x,h(x)x,ag(x)b,ah(x)b,x[a,b]g,h\in C[a,b]),g(x)\leq x,h(x)\leq x,\ a\leq g(x)\leq b,\ a\leq h(x)\leq b,\ \forall x\in[a,b] and we suppose that:

  • (i)

    F(x,,,,0)F(x,\cdot,\cdot,\cdot,0) and G(x,,,,0)G(x,\cdot,\cdot,\cdot,0) are homogeneous, for all x[a,b]x\in[a,b];

  • (ii)

    F(x,y,,,0)F(x,y,\cdot,\cdot,0)\ andG(x,,z,,0)\ G(x,\cdot,z,\cdot,0) are increasing,x[a,b];,\ \forall x\in[a,b];

  • (iii)

    F(x,1,1,1,0)<0F(x,1,1,1,0)<0,G(x,1,1,1,0)<0,x[a,b]\ G(x,1,1,1,0)<0,\ \forall x\in[a,b].

Then:

  • (a)

    If there exists x0[a,b]x_{0}\in[a,b] such that max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}>0,\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}>0, then x0{a,b};x_{0}\in\{a,b\};

  • (b)

    If there exists x0[a,b]x_{0}\in[a,b] such that min{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}<0,\min\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}<0, then x0{a,b}.x_{0}\in\{a,b\}.

Proof.

(a) We suppose that x0]a,b[.x_{0}\in]a,b[.\ Let max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}=y(x0)>0.\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}=y(x_{0})>0.\ We shall show that this leads to a contradiction.

Since yC1[a,b]y\in C^{1}[a,b] we have that y(x0)=0.y^{\prime}(x_{0})=0. From (1.1) we have

F(x0,y(x0),y(g(x0)),z(x0),0)=0.F(x_{0},y(x_{0}),y(g(x_{0})),z(x_{0}),0)=0.

Using (i) and (ii) we obtain

0\displaystyle 0 =F(x0,y(x0),y(g(x0)),z(x0),0)F(x0,y(x0),y(x0),y(x0),0)=\displaystyle=F(x_{0},y(x_{0}),y(g(x_{0})),z(x_{0}),0)\leq F(x_{0},y(x_{0}),y(x_{0}),y(x_{0}),0)=
=y(x0)F(x0,1,1,1,0)<0.\displaystyle=y(x_{0})F(x_{0},1,1,1,0)<0.

So, x0{a,b}.\ x_{0}\in\{a,b\}.

Now let max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}=z(x0)>0\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}=z(x_{0})>0.

Since zC1[a,b]z\in C^{1}[a,b] we have that z(x0)=0.z^{\prime}(x_{0})=0. From (1.1) we have

G(x0,y(x0),z(x0),z(h(x0)),0)=0.G(x_{0},y(x_{0}),z(x_{0}),z(h(x_{0})),0)=0.

Using (i) and (ii) we obtain

0\displaystyle 0 =G(x0,y(x0),z(x0),z(h(x0)),0)G(x0,z(x0),z(x0),z(x0),0)=\displaystyle=G(x_{0},y(x_{0}),z(x_{0}),z(h(x_{0})),0)\leq G(x_{0},z(x_{0}),z(x_{0}),z(x_{0}),0)=
=z(x0)G(x0,1,1,1,0)<0.\displaystyle=z(x_{0})G(x_{0},1,1,1,0)<0.

So, x0{a,b}.\ x_{0}\in\{a,b\}.

(b) Let min{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}=y(x0)<0.\min\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}=y(x_{0})<0.\ We suppose that x0]a,b[x_{0}\in]a,b[. Analogous, we prove that this leads to a contradiction. ∎

Corollary 2.8.

Let (y,z)C1([a,b],2)(y,z)\in C^{1}([a,b],\mathbb{R}^{2}) be a solution of the following system

{p1y+q1zy=0p2y+q2z+q3z(h)z=0\left\{\begin{array}[c]{l}p_{1}y+q_{1}z-y^{\prime}=0\\ p_{2}y+q_{2}z+q_{3}z(h)-z^{\prime}=0\end{array}\right.

and we suppose that q1>0,p2>0,q3>0,p1+q1<0q_{1}>0,\ p_{2}>0,\ q_{3}>0,\ p_{1}+q_{1}<0 and p2+q2+q3<0,h(x)x,ah(x)b,x[a,b].p_{2}+q_{2}+q_{3}<0,h(x)\leq x,a\leq h(x)\leq b,\ \forall x\in[a,b].

Then:

  • (a)

    If there exists x0[a,b]x_{0}\in[a,b] such that max{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}>0,\max\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}>0, then x0{a,b};x_{0}\in\{a,b\};

  • (b)

    If there exists x0[a,b]x_{0}\in[a,b] such that min{maxx[a,b]y(x),maxx[a,b]z(x)}=max{y(x0),z(x0)}<0,\min\left\{\underset{x\in[a,b]}{\max}y(x),\underset{x\in[a,b]}{\max}z(x)\right\}=\max\left\{y(x_{0}),z(x_{0})\right\}<0, then x0{a,b}.x_{0}\in\{a,b\}.

Example 2.9.

We consider on [0,1][0,1] the system

{4y6(x)+z6(x)y(x)=03y(x)5z(x)+z(x2)z(x)=0\left\{\begin{array}[c]{l}-4y^{6}(x)+z^{6}(x)-y^{\prime}(x)=0\\ 3y(x)-5z(x)+z(x^{2})-z^{\prime}(x)=0\end{array}\right.

with initial conditions y(0)=z(0)=1.y(0)=z(0)=1. We have q1=1,p2=3,q3=1,p1+q1<0,p2+q2+q3<0,h(x)=x2.q_{1}=1,\ p_{2}=3,\ q_{3}=1,\ p_{1}+q_{1}<0,\ p_{2}+q_{2}+q_{3}<0,h(x)=x^{2}.\ From Figure 3 one can see that the conditions of Theorem 2.7 hold.

Refer to caption
Figure 3. Plot of max{y(x),z(x)}\max\left\{y(x),z(x)\right\} as function of xx

3. Zeros of the components of the solutions of the system (1.1)

Let us consider the following conditions on the system (1.1):

  • (C1)

    F(x,0,0,0)=0,G(x,0,0,0)=0,x[a,b].F(x,0,0,0)=0,G(x,0,0,0)=0,\forall x\in[a,b].

  • (C2)

    If (y,z)(y,z) is a solution of (1.1) and y(x0)=z(x0)=0y(x_{0})=z(x_{0})=0 for some x0[a,b],x_{0}\in[a,b], then y=z=0y=z=0.

  • (C3)

    The Cauchy problem for (1.1) has at most a solution.

  • (C4)

    Let (y,z)(y,z) a solution of (1.1), then the problem

    {F(x,y,z,y)=0G(x,y,z,z)=0y(x0)=y0,y(x0)=y0\left\{\begin{array}[c]{l}F(x,y,z,y^{\prime})=0\\ G(x,y,z,z^{\prime})=0\\ y(x_{0})=y_{0},y^{\prime}(x_{0})=y_{0}^{\prime}\end{array}\right.

    where x0[a,b],x_{0}\in[a,b], y0,y0y_{0},y_{0}^{\prime}\in\mathbb{R} has at most a solution.

  • (C5)

    Let (y,z)(y,z) a solution of (1.1) then the problem

    {F(x,y,z,y)=0G(x,y,z,z)=0z(x0)=z0,z(x0)=z0\left\{\begin{array}[c]{l}F(x,y,z,y^{\prime})=0\\ G(x,y,z,z^{\prime})=0\\ z(x_{0})=z_{0},z^{\prime}(x_{0})=z_{0}^{\prime}\end{array}\right.

    where x0[a,b],x_{0}\in[a,b], z0,z0z_{0},z_{0}^{\prime}\in\mathbb{R} has at most a solution.

Remarks.
  • (1)

    If F(x,u,,w)=0F(x,u,\cdot,w)=0 has a solution in vv, x0[a,b],\forall x_{0}\in[a,b], u,w,u,w\in\mathbb{R}, then (C3) implies (C4).

  • (2)

    If F(x,,v,w)=0F(x,\cdot,v,w)=0 has a solution in uu, x0[a,b],\forall x_{0}\in[a,b], v,w,v,w\in\mathbb{R}, then (C3) implies (C5).

  • (3)

    (C1) and (C3) imply (C2).

  • (4)

    Let us consider the system

    {p1y+q1zy=0p2y+q2zz=0,pi,qiC[a,b],i=1,2.\left\{\begin{array}[c]{c}p_{1}y+q_{1}z-y^{\prime}=0\\ p_{2}y+q_{2}z-z^{\prime}=0\end{array}\right.,\ p_{i},q_{i}\in C[a,b],i=1,2.

    In this case the conditions (C1),(C2) and (C3) are satisfy.

    If q1(x)0,x0[a,b],q_{1}(x)\neq 0,\forall x_{0}\in[a,b], then the condition (C4) is satisfied.

    If p2(x)0,x0[a,b],p_{2}(x)\neq 0,\forall x_{0}\in[a,b], then the condition (C5) is satisfied.

  • (5)

    (C4) and (C5) imply (C3).

In what follow we also need the following result (see [13], [9], [4]).

Lemma 3.1.

(Tonelli’s Lemma; see [13] and [7]) Let y1,y2C1[a,b]y_{1},y_{2}\in C^{1}[a,b] be two functions which satisfy the following conditions:

  • (i)

    y1(a)=0,y1(b)=0y_{1}(a)=0,y_{1}(b)=0 and y1(x)>0,x]a,b[;y_{1}(x)>0,\forall x\in]a,b[;

  • (ii)

    y2(x)>0y_{2}(x)>0 , \forall x[a,b].x\in[a,b].

Then there exists λ>0\lambda>0 and x0]a,b[x_{0}\in]a,b[ such that:

y2(x0)=λy1(x0) and y2(x0)=λy1(x0).y_{2}(x_{0})=\lambda y_{1}(x_{0})\text{ and }y_{2}^{\prime}(x_{0})=\lambda y_{1}^{\prime}(x_{0}).

Next, we use another version of Tonelli’s lemma.

Lemma 3.2.

(Tonelli’s Lemma) Let y1,y2C[a,b]y_{1},y_{2}\in C[a,b] be such that:

  • (i)

    y1(a)=0,y1(b)=0y_{1}(a)=0,y_{1}(b)=0 and y1(x)0,x]a,b[;y_{1}(x)\neq 0,\forall x\in]a,b[;

  • (ii)

    y2(x)0y_{2}(x)\neq 0 , \forall x[a,b].x\in[a,b].

Then there exists λ\lambda\in\mathbb{R}^{\ast} and x0[a,b]x_{0}\in[a,b] such that:

y2(x0)=λy1(x0) and y2(x0)=λy1(x0).y_{2}(x_{0})=\lambda y_{1}(x_{0})\text{ and }y_{2}^{\prime}(x_{0})=\lambda y_{1}^{\prime}(x_{0}).
Remark 3.3.

For Lemma 3.1 see also: [3], [4] and [9].

Our results are the following.

Theorem 3.4.

(Nicolescu-type separation theorem) For the system (1.1), we suppose that:

  • (i)

    FF and GG are homogeneous with respect to the last three arguments;

  • (ii)

    F(x,y,z,)F(x,y,z,\cdot)\ andG(x,y,z,)\ G(x,y,z,\cdot) are increasing,x[a,b];,\ \forall x\in[a,b];

  • (iii)

    F(x,1,λ,1)0,G(x,λ,1,1)0,F(x,1,\lambda,1)\neq 0,\ G(x,\lambda,1,1)\neq 0, for all λ.\lambda\in\mathbb{R}^{\ast}.

Then, if (y,z)(y,z) is a solution of (1.1), the zeros of yy and zz separate each other.

Proof.

We consider x1x_{1} and x2x_{2} two consecutive zeros of y(x)y(x). We have to prove that z(x)z(x) has at least one zero in the interval (x1,x2)(x_{1},x_{2}).

We suppose that z(x)0,x[x1,x2]z(x)\neq 0,\ x\in[x_{1},x_{2}]. Applying Tonelli’s Lemma 3.2 there exists x0(x1,x2)x_{0}\in(x_{1},x_{2}) and λ\lambda\in\mathbb{R}^{\ast} such that

z(x0)=λy(x0),z(x0)=λy(x0).z(x_{0})=\lambda y(x_{0}),\ z^{\prime}(x_{0})=\lambda y^{\prime}(x_{0}).

From (1.1) we have

F(x0,y(x0),λy(x0),y(x0))=0.F(x_{0},y(x_{0}),\lambda y(x_{0}),y^{\prime}(x_{0}))=0.

We suppose that y(x0)y(x0).y(x_{0})\geq y^{\prime}(x_{0}). Then

0\displaystyle 0 =F(x0,y(x0),λy(x0),y(x0))F(x0,y(x0),λy(x0),y(x0))=\displaystyle=F(x_{0},y(x_{0}),\lambda y(x_{0}),y^{\prime}(x_{0}))\leq F(x_{0},y(x_{0}),\lambda y(x_{0}),y(x_{0}))=
=y(x0)F(x0,1,λ,1)<0,\displaystyle=y(x_{0})F(x_{0},1,\lambda,1)<0,
0\displaystyle 0 =G(x0,y(x0),λy(x0),λy(x0))G(x0,y(x0),λy(x0),λy(x0))=\displaystyle=G(x_{0},y(x_{0}),\lambda y(x_{0}),\lambda y^{\prime}(x_{0}))\leq G(x_{0},y(x_{0}),\lambda y(x_{0}),\lambda y(x_{0}))=
=λy(x0)G(x0,1λ,1,1)<0,\displaystyle=\lambda y(x_{0})G(x_{0},\tfrac{1}{\lambda},1,1)<0,

so we have reached a contradiction.

If y(x0)y(x0).y(x_{0})\leq y^{\prime}(x_{0}). Then

0\displaystyle 0 =F(x0,y(x0),λy(x0),y(x0))F(x0,y(x0),λy(x0),y(x0))=\displaystyle=F(x_{0},y(x_{0}),\lambda y(x_{0}),y^{\prime}(x_{0}))\geq F(x_{0},y(x_{0}),\lambda y(x_{0}),y(x_{0}))=
=y(x0)F(x0,1,λ,1)>0,\displaystyle=y(x_{0})F(x_{0},1,\lambda,1)>0,
0\displaystyle 0 =G(x0,y(x0),λy(x0),λy(x0))G(x0,y(x0),λy(x0),λy(x0))=\displaystyle=G(x_{0},y(x_{0}),\lambda y(x_{0}),\lambda y^{\prime}(x_{0}))\geq G(x_{0},y(x_{0}),\lambda y(x_{0}),\lambda y(x_{0}))=
=λy(x0)G(x0,1λ,1,1)>0,\displaystyle=\lambda y(x_{0})G(x_{0},\tfrac{1}{\lambda},1,1)>0,

so we have reached a contradiction. ∎

Theorem 3.5.

(Butlewski-type separation theorem) For the homogeneous system (1.1), we suppose that it satisfies condition (C2). Then, if (y1,z1)(y_{1},z_{1}) and (y2,z2)(y_{2},z_{2}) are two linear independent solutions of (1.1), then the zeros of y1y_{1} and y2y_{2} (z1z_{1} and z2z_{2}) separate each other on [a,b][a,b].

Proof.

We consider x1x_{1} and x2x_{2} two consecutive zeros of y1(x)y_{1}(x). We have to prove that y2(x)y_{2}(x) has at least one zero in [x1,x2][x_{1},x_{2}].

We suppose that y2(x)0,x[x1,x2]y_{2}(x)\neq 0,\ x\in[x_{1},x_{2}]. Applying Tonelli’s Lemma 3.2 there exists x0(x1,x2)x_{0}\in(x_{1},x_{2}) and λ\lambda\in\mathbb{R}^{\ast} such that

y2(x0)=λy1(x0),y2(x0)=λy1(x0).y_{2}(x_{0})=\lambda y_{1}(x_{0}),\ y_{2}^{\prime}(x_{0})=\lambda y_{1}^{\prime}(x_{0}).

Taking into account (C2) we have that y2(x)=λy1(x)y_{2}(x)=\lambda y_{1}(x) and so we have reached a contradiction. ∎

Acknowledgement The work of the first author was partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

References

  • [1] Z. Butlewski, Sur les zeros des integrales reelles des equations differentielles lineaires, Mathematica, 17 (1941), 85–110.
  • [2] P. Hartman, Ordinary differential equations, J. Wiley and Sons, New York, 1964.
  • [3] V.A. Ilea, D. Otrocol, I.A. Rus, Some properties of solutions of the homogeneous nonlinear second order differential equations, Mathematica, 57(80) (2017), Nos. 1-2, 38–43.
  • [4] A.S. Mureşan, Tonelli’s lemma and applications, Carpathian J. Math., 28 (2012), No. 1, 103–110.
  • [5] M. Nicolescu, Sur les theoremes de Sturm, Mathematica, 1 (1929), 111–114.
  • [6] W.T. Reid, Sturmian theory for ordinary differential equations, Springer, Berlin, 1980.
  • [7] I.A. Rus, On the zeros of solutions of a system with two first order differential equations, Studii si Cercetari de Matematica (Cluj), 14 (1963), 151–156 (In Romanian).
  • [8] I.A. Rus, Separation theorems for the zeros of some real functions, Mathematica, 27 (1985), No. 1, 43–46.
  • [9] I.A. Rus, Differential equations, integral equations and dinamical systems, Transilvania Press, Cluj-Napoca, 1996 (In Romanian).
  • [10] G. Sansone, Equazioni differenziali nel compo reale, Parte prima, Bologna, 1948.
  • [11] G. Sansone, Equazioni differenziali nel compo reale, Parte seconda, Bologna, 1949.
  • [12] C.A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968.
  • [13] L. Tonelli, Un’osservazione su un teorema di Sturm, Boll. Union. Mat. Italiana, 6 (1927), 126–128.
2018

Related Posts