Spectral collocation solutions to multiparameter Mathieu’s system

Abstract

Our main aim is the accurate computation of a large number of specified eigenvalues and eigenvectors of Mathieu’s system as a multiparameter eigenvalue problem (MEP). The reduced wave equation, for small deflections, is solved directly without approximations introduced by the classical Mathieu functions. We show how for moderate values of the cut-off collocation parameter the QR algorithm and the Arnoldi method may be applied successfully, while for larger values the Jacobi–Davidson method is the method of choice with respect to convergence, accuracy and memory usage.

Authors

Călin-Ioan Gheorghiu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

M. E. Hochstenbach
(Department of Mathematics and Computer Science, TU Eindhoven)

B. Plestenjak
(Department of Mathematics, University of Ljubljana)

J. Rommes
(NXP Semiconductors, The Netherlands)

Keywords

Mathieu’s system; Chebyshev collocation; multiparameter eigenvalue problem; Jacobi–Davidson method; tensor Rayleigh quotient iteration.

References

See the expanding block below.

Cite this papaer as

C.I. Gheorghiu, M.E. Hochstenbach, B. Plestenjak, J. Rommes, Spectral collocation solutions to multiparameter Mathieu’s system, Appl. Math. Comput., 218 (2012) 11990-12000.
doi: 10.1016/j.amc.2012.05.068

PDF

http://www.win.tue.nl/~hochsten/pdf/mathieu.pdf

About this paper

Print ISSN

0096-3003

Online ISSN
Google Scholar Profile

google scholar link

[1] H. Volkmer, Multiparameter Problems and Expansion Theorems, Lecture Notes in Math. 1356, Springer-Verlag, New York, 1988.
[2] J. Meixner, F. W. Schafke, Mathieusche Funktionen und Spharoidfunktionen, Springer-Verlag, 1954.
[3] L. Ruby, Applications of the Mathieu equation, Am. J. Phys. 64 (1996) 39–44.
[4] A. O. Igbokoyi, D. Tiab, New method of well test analysis in naturally fractured reservoirs based on elliptical flow, J. Can. Pet. Technol. 49 (2010) 1–15.
[5] A. G. M. Neves, Eigenmodes and eigenfrequencies of vibrating elliptic membranes: A Klein oscillation theorem and numerical calculations, Commun. Pure Appl. Anal. 9 (2004) 611–624.
[6] B. A. Troesch, H. R. Troesch, Eigenfrequencies of an elliptic membrane, Math. Comput. 27 (1973) 755–765.
[7] J. Gutierrez-Vega, S. Chavez-Cerda, R. Rodrıguez-Dagnino, Free oscillations in an elliptic mambrane, Rev. Mex. Fiz. 45 (1999) 613–622.
[8] H. B. Wilson, R. W. Scharstein, Computing elliptic membrane high frequencies by Mathieu and Galerkin methods, J. Eng. Math. 57 (2007) 41– 55.
[9] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.
[10] J. A. C. Weideman, S. C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Softw. 26 (2000) 465–519.
[11] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Lecture Notes in Engineering 49, Springer-Verlag, Berlin, 1989.
[12] J. Shen, L-L. Wang, On spectral approximation in elliptical geometries using Mathieu functions, Math. Comput. 78 (2009) 815–884.
[13] S. R. Finch, Mathieu eigenvalues, algo.inria.fr/csolve/mthu.pdf (2008).
[14] B. D. Sleeman, Multiparameter spectral theory and separation of variables, J. Phys. A: Math. Theor. 41 (2008) 1–20.
[15] F. V. Atkinson, Multiparameter Eigenvalue Problems, Academic Press, New York, 1972.
[16] M. E. Hochstenbach, T. Kosir, B. Plestenjak, A Jacobi–Davidson type method for the nonsingular two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl. 26 (2005) 477–497.
[17] B. Plestenjak, A continuation method for a right definite two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl. 21 (2000) 1163–1184.
[18] G. H. Golub, C. F. Van Loan, Matrix Computations, third ed., The Johns Hopkins University Press, Baltimore, 1996.
[19] M. E. Hochstenbach, B. Plestenjak, Harmonic Rayleigh-Ritz for the multiparameter eigenvalue problem, Electron. Trans. Numer. Anal. 29 (2008) 81–96.
[20] J. Rommes, Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax = λBx with B singular, Math. Comput. 77 (2008) 995–1015.
[21] F. I. Dragomirescu, C. I. Gheorghiu, Analytical and numerical solutions to an electrohydrodynamic stability problem, Appl. Math. Comput. 216 (2010) 3718–3727.
[22] C. I. Gheorghiu, Spectral Methods for Differential Problems, Casa Cartii de Stiinta, Cluj-Napoca, 2007.
[23] C. I. Gheorghiu, F. I. Dragomirescu, Spectral methods in linear stability. Application to thermal convection with variable gravity field, Appl. Numer. Math. 59 (2009) 1290–1302.
[24] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, 1998.
[25] J. Hoepffner, Implementation of boundary conditions, www.fukagata. mech.keio.ac.jp/~jerome/ (2007).
[26] M. E. Hochstenbach, B. Plestenjak, Backward error, condition numbers, and pseudospectra for the multiparameter eigenvalue problem, Lin. Alg. Appl. 375 (2003) 63–81.
[27] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, second ed., Texts in Applied Mathematics 47, Springer, Berlin Heidelberg, 2007.
[28] H. B. Wilson, L. S. Turcotte, D. Halpern, Advanced Mathematics and Mechanics Applications Using MATLAB, third ed., Chapman and Hall/CRC, Boca Raton, 2003.
[29] H. B. Wilson, Vibration modes of an elliptic membrane. Available from http://www.mathworks.com/matlabcentral/fileexchange. MATLAB File Exchange, The MathWorks, Natick, 2004.

2012

Related Posts