Spectral Collocation Solutions to Problems on Unbounded Domains

Book summary

Summary of the book…

Book cover


spectral collocation;


Călin-Ioan Gheorghiu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

1 Interpolation on Unbounded Intervals
1.1 Interpolation problem
1.2 Hermite and Sinc functions
1.2.1 Hermite functions
1.2.2 Hermite collocation
1.2.3 Sinc functions
1.2.4 Sinc collocation
1.3 Laguerre functions
1.3.1 The rate of convergence of polynomial Laguerre series
1.3.2 Laguerre collocation
1.3.3 Laguerre Gauss Radau collocation
1.4 Mapping techniques
1.4.1 Preconditioned differentiation
1.5 Miscellanies
1.5.1 The rate of convergence of eigenfunction expansion
1.5.2 Polynomial transforms
1.5.3 Boundary condition implementation

2  1D Problems on Unbounded Domains
2.1 Some TPBVP on the half line
2.1.1 Linear second order TPBVP
2.1.2 The Heun’s equation
2.1.3 Global solutions to a class of nonlinear second order TPBVP
2.1.4 Systems of TPBVP
2.1.5 Another boundary layer type problem
2.2 TPBVP on the real line
2.2.1 The order of approximation for SiC
2.2.2 SiC vs. HC for TPBVP on the real line

3 Eigenvalue Problems
3.1 Singular eigenvalue problems on the half line
3.1.1 ”Good” and ”bad” eigenvalues
3.1.2 Problems with parameter dependent boundary conditions
3.1.3 Schrodinger eigenvalue problems on the half line
3.1.4 A singular SturmLiouville problem with a complex potential
3.1.5 The Orr-Sommerfeld problem for boundary-layer flows
3.1.6 A fourth order singular eigenvalue problem
3.2 Singular eigenvalue problems on the real line
3.2.1 The eigenfunctions orthogonality as a check of the accuracy
3.2.2 Continuous spectra and numerical eigenvalues
3.3 Solving algebraic generalized eigenvalue problems

4 Problems Attached to PDEs
4.1 Multidimensional problems reductive to TPBVP
4.2 MoL for second order parabolic PDEs
4.2.1 The normality of D(2) H and D(2) Si matrices
4.2.2 The region of absolute stability of TR-BDF2 finite difference scheme
4.2.3 Unsteady diffusion equation on the half line
4.2.4 Viscous Burgers’ equation on the real line
4.3 Fischer’s equation
4.4 The BBM type equations
4.4.1 HC and SiC solutions to BBM
4.4.2 Conservation of the energy integral
4.5 An IVP for Fokker-Planck equation
4.6 The KdV equation
4.7 Linear Schroedinger equation
4.8 The NLS equation
4.8.1 General-power Schroedinger equation
4.8.2 Waveguide solutions to the cubic NLS equation
4.8.3 Blow-up self similar solutions to the cubic NLS equation
4.8.4 Radially symmetric solutions to NLS
4.8.5 An envelope soliton problem attached to NLS

5 MATLAB scripts
5.1 Boundary value problems
5.1.1 Blasius boundary value problem
5.1.2 A singular nonlinear TPBVP
5.2 Eigenvalue problems
5.2.1 A fourth-order eigenvalue problem on half line
5.2.2 An second order eigenvalue problem on the real line
5.3 Initial value problems

6 Concluding remarks and open problems


pdf file


see the expanding block below.

Cite this book as:

Author, title, publisher, year.

Book Title

Spectral Collocation  Solutions to Problems on Unbounded Domains


Casa Cărții de Știință, Cluj-Napoca

Print ISBN

ISBN 978-606-17-1272-4


Călin-Ioan Gheorghiu

Online ISBN

Google scholar

The book on google scholar.

[1] Ablowitz, M.J., Segur, H.: Solitons and the inverse scattering transform. SIAM, Philadelphia, PA, 1981
[2] Abramowitz, M., Stegun, I. E.: Handbook of Mathematical Functions. National Bureau of Standards, Washington DC. (1964)
[3] Acheson, D.J.: Elementary Fluid Dynammics. Oxford University Press (1992)
[4] Adams, R. A.: Sobolev Spaces. Academic Press, New York-San Francisco-London (1975)
[6] Agarwal, R.P.,  O. Regan, D.: Infinite interval problems modeling the flow of a gas through a semi-infinite porous medium. Stud. Appl. Math. 108, 245-257 (2002)
[7] Alonso-Mallo, I., Reguera, N.: A high order finite element discretization with local absorbing boundary conditions of the linear Schroinger equation. J. Comput. Phus. 220, 409-421 (2006)
[8] Anastassi, Z. A., Vlachos, D. S., Simos, T. E.: A new methodology for the development of numerical methods for the numerical solution of the Schrodinger equation. J. Math. Chem. 46, 621-651 (2009)
[9] Antoine, X., Besse, C.: Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrodinger equation.J. Comput. Phys. 188, 157“-175 (2003)
[10] Askey, R., Wainger, S.: Mean Convergence of Expansions in Laguerre and Hermite Series. Am. J. Math. 87 695-708 (1965)
[11] Bailey, P.B., Gordon, M.K., Shampine, L.F.: Automatic Solution of the Sturm-Liouville Problem. ACM. T. Math. Software. 4, 193-208 (1978)
[12] Bailey, P.B., Everitt, W.N., Zettl, A.:  Algorithm 810: The SLEIGN2 Sturm-Liouville Code. ACM T. Math. Software. 27, 143-192 (2001)
[12] Baxley, J.V.: Existence and Uniqueness for Nonlinear Boundary Value Problems on Infinite Intervals. J. Math. Anal. Appl. 147, 122-133 (1990)
[13] Benacchio, T., Bonaventura, L.: Absorbing boundary conditions: a spectral collocation approach. Int. J. Numer. Meth. Fluids 72, 913-936 (2013)
[14] Bender, C. M., Orszag, S. A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, Inc., New York, NY (1978)
[15] Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model Equations for Long Waves in Nonlinear Dispersive Systems. Philos. Trans. Roy. Soc. London Ser.A. 272, 47-78 (1972)
[16] Benton, E.R.:On the flow due to a rotating disk. J. Fluid Mech. 24, 781-800 (1966)
[17] Benton, E.R.,  Platzman, G.W.: A table of solutions of the one-dimensional Burgers equation.  Q. Appl. Math. 30, 195-216 (1972)
[18] Berghe, V.G., Fack, V., De Meyer, H.E.:  Numerical methods for solving radial Schrodinger equations, J. Comput. Appl. Math. 29,  391-401 (1989)
[19] Berghe, V.G., Daele, V.M., De Meyer, H.E.: Accurate high-lying eigenvalues of Schr\”{o}dinger and Sturm-Liouville problems, Phys. Lett. A 193, 341-347 (1994)
[20] Berland, H., Skaflestad, B., Wright. W. M.: EXPINTA MATLAB package for exponential integrators. ACM T. Math.  Software. 33, 1-17(2007)
[21] Bernardy, C., Maday, Y.: In: Ciarlet, P., Lions, J. L. {eds}: Spectral Methods, vol. 5 (Part 2), North-Holland (1997)
[22] Bialecki, B.: Sinc-Collocation Methods for Two-Point Boundary Value Problems. IMA J. Numer. Anal. 11, 357-375 (1991)
[23] Birkhoff, G., Rota, G.-C.: Ordinary Differential Equations, Wiley, Fourth Ed. (1989)
[24] Bogacki,P., Shampine, L.F.: A 3(2) Pair of Runge – Kutta Formulas. Appl. Math. Lett. 2, 321-325 (1989)
[25] Bona, J.L., Pritchard, W.G., Scott, L.R.: Comparison of Two Model Equations for Long Waves, AMS\ Lectures in Applied Mathematics. 20, 235-267 (1983)
[26] Bonanno, G., O’Regan, D.: O Boundary Value Problem on the Half-Line Via Critical Point Mothods. Dyn. Syst. Appl. 15, 395-408 (2006)
[27] Boros, I.: The 3-node preconditioner for the $\frac{d^{2}}{dx^{2}}$ Chebyshev spectral operator. Scientific Seminar of “T. Popoviciu” Institute of Numerical Analysis, Cluj-Napoca, Romania, March 2017
[28] Boros, I.: Accurate Chebyshev collocation solutions for the biharmonic eigenproblem on a rectangle. J. Numer. Anal. Approx. Theory, 46, 38-46 (2017)
[29] Boyd, J.P.: The Optimization of Convergence for Chebyshev Polynomial Methods in an Unbounded Domain. J. Comput. Phys. 45, 43-78 (1982)
[30] Boyd, J.P.: Spectral Methods Using Rational Basis Functions on an Infinite interval. J. Comp. Phys. 69, 112-142 (1987)
[31] Boyd, J.P.: Orthogonal Rational Functions on a Semi-infinite Interval.  J. Comp. Phys. 70, 63-88 (1987)
[32] Boyd, J.P.: Chebyshev Domain Truncation Is Inferior to Fourier Domain Truncation for Solving Problems on an Infinite Interval. J. Sci. Comput. 3, 109-120(1988)
[33] Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Second Edition, DOVER Publications, Inc. (2000)
[34] Boyd, J. P., Rangan, C., Bucksbaum, P.H.: Pseudospectral methods on a semi-infinite interval with application to the Hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions. J. Comput. Phys. 188, 56-74 (2003)
[35] Boyd, J. P.: Chebyshev spectral method and the Lane-Emden equation. Numer. Math. Theor. Meth. Appl. 4, 142-145 (2011)
[36] Boyd, J.P.: Traps and Snares in Eigenvalue Calculations with Application to Pseudospectral Computations of Ocean Tides in a Basin Bounded by Meridians. J. Comput. Phys. 126, 11-20 (1996)
[37] Boyd, J.P.: The Blasius Function: Computations Before Computers, the Value of Tricks, Undergraduate Projects, and Open Research Problems. SIAM Rev. 50, 791-804 (2008)
[38] Boyd, J.P.: Five themes in Chebyshev spectral methods applied to the regularized Charney eigenproblem. Comput. Math. Appl. 71, 1277-1241 (2016)
[39] Boyd, J.P., Tracing Multiple Solution Branches for Nonlinear Ordinary Differential Equations: Chebyshev and Fourier Spectral Methods and a Degree-Increasing Spectral Homotopy [DISH].
[40] Boyd, J.P., Gheorghiu, C.I.: All Roots Spectral Methods: Constraints, Floating Point Arithmetic and Root Exclusion. Appl. Math. Lett. 67, 28-32 (2017)
[41] Branscome, L.E.: The Charney Baroclinic Stability Problem: Approximate Solutions and Modal Structures. J. Atmos. Sci.  40, 1393-1409 (1983)
[42] Briggs, W. L., Newell, A. C. and Sarie, T.: The mechanism by which many partial difference equations destabilize, in H. Haken (ed.), Chaos and Order in Nature, Springer Verlag, New York, pp. 269-273 (1981) Aliasing instability.
[43] Brown, B. M., Eastham, M. S. P., McCormack, D. K. R., Evans, W. D.: Approximate diagonalization in differential systems and an effective algorithm for the computation of the spectral matrix Math. Proc. Comb. Phil. Soc. 121, 495-517 (1997)
[44] Brown, B. M., McCormack, D. K. R., Marletta, M.: Guaranteed error bounds for eigenvalues of singular SturmLiouville problems. Math. Nachr. 213, 17-33 (2000)
[45] Brown, B. M., Langer, M., Marletta, M., Tretter, C., Wagenhofer, M.: Eigenvalue bounds for the singular SturmLiouville problem with a complex potential. J. Phys. A: Math. Gen. 36, 3773-3787 (2003)
[46] Budd, C.J., Chen,S., Russell, R.D.: New self-similar solutions of the nonlinear Schrodinger equation with moving mesh computations. J. Comput. Phys75, 756-789 (1999)
[47] Budd, C., Koch, O., Weinm\”{u}ller, E.: From nonlinear PDEs to singular ODEs. Appl. Numer. Math. 56, 413-422 (2006)
[48] Budd, C., Koch, O., Weinmuller, E.: Computation of Self-similar Solution Profiles for the Nonlinear Schrodinger Equation. Computing 77, 335-346 (2006)
[49] Butcher, J.C.: THe Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley, New-York, (1987)
[50] Canuto, C, Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, New York (1987)
[51] Chawla, S.S., Verma, A.R.: Free convection from a disk rotating in a vertical plane. J. Fluid Mech. 126, 307-313 (1983)
[52] Chen, H., Shizgal, B.D.: A spectral solution of the SturmLiouville equation: comparison of classical and nonclassical basis sets. J. Comput. Appl. Math. 136, 17-35 (2001)
[53] Cloot, A., Weideman, J.A.C.: An Adaptive Algorithm for Spectral Computations on Unbounded Domains. J. Comput. Phys. 102, 398-406 (1992)
[54] Delfour, M., Fortin, M.,  Payre, G.: Finite-Difference Solutions of a Non-linear Schrodinger Equation. J. Comput. Phys. 44, 277-288 (1981)
55] Drazin, P.G., Johnson, R.S.: Solitons: an introduction. Cambridge Texts in Applied Mathematics, 2nd Ed. (1996)
[56] Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. 2nd Ed. Cambridge University Press, (2004)
[57] Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Oxford: Pafnuty Publications(2014)
[58] Driscoll, T.A., Hale, N.: Rectangular spectral collocation. IMA J. Numer. Anal. doi:10.1093/imanum/dru062.
[59] Dutykh,D., Katsaounis, T.,  Mitsotakis, D.: Finite volume schemes for dispersive wave propagation and run-up. J. Comput. Phys. 230, 3035- -3061 (2011)
[60] D’yachenko, A.I., Zakharov,V. E., Pushkarev, A.N.,  Shvets, V. F., Yan’kov, V.V.: Soliton turbulence in nonintegrable wave systems. Sov. Phys. JETP 69, 1144-1147 (1989)
[61] Fack, V., Berghe, V.G.: (Extended) Numerov method for computing eigenvalues of specific Schrodinger equations. J. Phys. A 20, 4153-4160 (1987)
[62] Fang, T., Lee, C-f. F.: A moving-wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate. Appl. Math. Lett. 18, 487-495(2005)
[63] Fazio, R.: A novel approach to the numerical solution of boundary value problems on infinite intervals. SIAM J. Numer. Anal. 33, 1473-1483 (1996)
[64] Fischer, T.M.: A spectral Galerkin approximation of the Orr-Sommerfeid eigenvalue problem in a semi-infinite domain. Numer. Math. 66, 159-179 (1993)
[65] Flessas, G.P.: Definite integrals as solutions for the $x^{2}+\frac{\lambda x^2}{1+gx^{2}}$ potential. J. Phys. A: Math. Gen. 15, L97-L101 (1982)
[66] Fokkema, D.R., Sleijpen, G.L.G., Van der Vorst, H.A.: Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 94-125 (1998) (electronic)
[67] Fornberg, B.: A Practical Guide to Pseudospectral Mathods. Cambridge University Press, (1998)
[68] Funaro, D.: Polynomial Approximation of Differential Equations. Springer-Verlag, Berlin Heidelberg (1992)
[69] Gadreau, P., Slevinsky, R., Safouhi, H.: The double exponential sinc collocation method for singular Sturm-Liouville problems. J. Math. Phys. 57, 043505 (2016); doi: 10.1063/1.4947059
[70] Gadreau, P., Safouhi, H.: Double exponential sinc-collocation method for solving the energy eigenvalues of harmonic oscillators perturbed by a rational function. J. Math. Phys. 58, 101509 (2017); doi: 10.1063/1.5004974
[71] Ghelardoni, P., Gheri, G., Marletta, M.: Spectral corrections for SturmLiouville problems. J. Comput. Appl. Math. 132, 443-459 (2001)
[72] Gheorghiu, C.I.: Spectral Methods for Differential Problems. Casa Cărții de Știință Publishing House, Cluj-Napoca, 2007 (see https://ictp.acad.ro/gheorghiu/papers)
[73] Gheorghiu, C.I., Hocstenbach, M.E., Plestenjak, B., Rommes, J.: Spectral collocation solutions to multiparameter Mathieu’s system. Appl. Math. Comput. 218, 11990-12000 (2012)
[74] Gheorghiu, C.I., Rommes, J.: Application of the Jacobi-Davidson method to accurate analysis of singular linear hydrodynamic stability problems. Int. J. Numer. Method Fl. 71, 358-369 (2013)
[75] Gheorghiu, C.I.: Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural Mechanics and Beyond. Springer Cham Heidelberg New York Dondrecht London (2014)
[76] Gheorghiu, C.I.: Stable spectral collocation solutions to a class of Benjamin Bona Mahony initial value problems. Appl. Math. Comput. 273, 1090-1099 (2016)
[77] Gheorghiu, C.I.: Spectral collocation solutions to systems of boundary layer type, Numer. Algor. 73, 1-14 (2016)
[78] Gheorghiu, C.I.: On the numerical treatment of the eigenparameter dependent boundary conditions.DOI: 10.1007/s11075-017-0305-1 (2017)
[79] Gomes, J. M.,  Sanchez, L.: Variational approach to some boundary value problems in the half-line. Z. angew. Math. Phys. 56, 192-209 (2005)
[80] Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia, Pennsilvania 19103 (1977)
[81] Gottlieb, D., Hussaini, M.Y., Orszag, S.A.: Theory and Applications of Spectral Methods. In: Voigt, R.G., Gottlieb, D., Hussaini, M.Y., (eds.) Spectral Methods for Partial Differential Equations, pp. 1-54,  SIAM-CBMS (1984)
[82] Goussis, D.A., Pearlstein, A.J.: Removal of Infinite Eigenvalues in the Generalized Matrix Eigenvalue Problems. J. Comput. Phys. 84, 242-246 (1998)
[83] Gray, S.K., Manolopoulos, D.E.:Symplectic integrators tailored to the time-dependent Schrodinger equation. Chem. Phys. 104, 7099-7112 (1996)
[84]  Granas, A., Guenther, R.B., Lee, J. W., O’Regan, D.: Boundary Value Problems on Infinite Intervals and Semiconductor Devices. J.Math. Anal. Appl. 116, 335-348 (1986)
[85] Greenberg, L., Marletta, M.: Algorithm 775: The Code SLEUTH for Solving Fourth-Order Sturm-Liouville Problems. ACM T. Math. Software. 23, 453-493 (1997)
[86] Grosch, C. E. and Orszag, S. A.: Numerical Solution of Problems in Unbounded Regions; Coordinate Transform. J. Comp. Phys., 25, 273-296 (1977)
[87] Guba, O., Lorenz, J.: Continuous spectra and numerical eigenvalues. Math. Comput. Model. 54, 2616-2622 (2011)
[88]  Guo, B.-y, Wang, Z.-q, Wan, Z.-s, Chu, D.: Second order Jacobi approximation with applications to fourth-order differential equations. Appl. Numer. Math. \55, 480-502 (2005)
[89] Hall, R.L.: Square-well representations for potentials in quantum mechanics. Math. Phys. 33, 3472-3476 (1992)
[90] Hammerling, R., Koch, O., Simon, Ch., Weinmüller, E.: Numerical Solution of Singular Eigenvalue Problems for ODEs with a Focus on Problems Posed on Semi-Infinite Intervals, Technical Report, Institute for Analysis and Scientific Computing, Vienna University of Technology
[91]  Hammerling, R., Koch, O., Simon, Ch., Weinmüller, E.: Numerical solution of singular ODE eigenvalue problems in electronic structure  computations.  Comput. Phys. Comm. 181, 1557-1561 (2010)
[92] Herbst, B.M., Morris, J.L., Mitchell, A.R.: Numerical Experience with the Nonlinear Schrodinger Equation. J. Comput. Phys. 60, 277-284 (1985)
[93] Higham, D.J., Trefethen, L.N., Stifness of ODEs. BIT 33, 285-303 (1993)
[94] Hoepffner, J.: Implementation of boundary conditions. http://www.lmm.jussieu.fr sim hoepffner/boundarycondition.pdf(2010) Accessed 25 August 2012
[95] Huang, W., Sloan, D.M.: The pseudospectral method for solving differential eigenvalue problems. J. Comput. Phys. 111, 399-409 (1994)
[96] Iacono, R., Boyd, J.P.: The Kidder Equation: u_{xx}+2xu_{x}/\sqrt{1-\alphau}=0. Stud. Appl. Math. 135, 63-85 (2014)
[97] Iranzo, V., Falques, A.: Some spectral approximations for differential equations in unbounded domains. Comput. Methods Appl. Mech. Engrg. 98,  105-126 (1992)
[98] Ishikawa, H.: Numerical methods for the eigenvalue determination of second-order ordinary differential equations. J. Comput. Appl. Math. 208 404-424 (2007)
[99] Kahan, W., Parlett, B. N., Jiang, E.: Residual bounds on approximate eigensystems of nonnormal matrices. SIAM J. Numer. Anal. 19, 470-484 (1982)
[100] Kassam, A-K., Trefethen, L.N.: Fourth-Order Time Stepping for  Stiff PDEs. SIAM J. Sci. Comp. 26, 1214-1233 (2005)
[101] Klemp, J.P., Acrivos, A.: A method for integrating the boundary-layer equations through a region of reverse flow. J. Fluid Mech. 53, 177-191 (1972)
[102] Knyazev, A.V.: Preconditioned Eigensolvers—an Oxymoron? ETNA Kent State University. \textbf{7}, 104–123 (1998)
[103] Krall, A. M.: Orthogonal polynomials satisfying fourth order differential equations. Proc. Roy. Soc. Edinburgh \textbf{87A}, 271-288 (1981)
[104] Krutter,H.: Numerical Integration of the Thomas-Fermi Equation from Zero to Infinity. J. Comput. Phys. \textbf{47}, 308–312 (1982)
[105] Kumar, S.K.,  Thacker, W.I.,  Watson, L.T.: Rotating magnetohydrodynamic flow about a stationary disk in a circular magnetic field. Comput. Math. Appl. 17, 1435-1439 (1989)
[106] Labrosse, G.: The piecewise-linear Finite Volume scheme: The best known lowest-order preconditioner for the Chebyshev spectral operator. J. Comput. Phys. 228, 4491-4509 (2009)
[107] Labrosse, G., Redondo, A.: The optimal 3-node preconditioner of the Fourier and Chebyshev spectral operators. J. Comput. Phys. 230, 147-158 (2011)
[108] Lakin, W.D., Reid, W.H.: Asymptotic analysis of the Orr-Sommerfeld problem for boundary-layer flows. Q. J. Mech. appl Math. 35, 69-89 (1982)
[109] Lax, P.: Integrals of Nonlinear Equations of Evolution and Solitary Waves. Commun. Pur. Appl. Math. 21, 467-490 (1968)
[110]  Ledoux, V., Ixaru, L.Gr., Rizea, M., Daele, V.M., Berghe, V.G.: Solution of the Schrdinger equation over an infinite integration interval by perturbation methods, revisited. Comput. Phys. Commun. \textbf{175}, 612-619(2006)
[111] Ledoux, V., Daele, M.V., Berge, V.G.: Efficient computation of high index SturmLiouville eigenvalues for problems in physics. Comput. Phys. Commun. 180, 241-250 (2009)
[112] Lentini, M., Keller, H.B.: Boundary value problems on semi-infinite intervals and their numerical solution. SIAM J. Numer. Anal. 17, 577-604 (1980)
[113] LeMesurier, B.J.,  Papanicolaou, G.C., Sulem, C., Sulem, P.L.: Local structure of the self-focusing singularity of the nonlinear Schrodinger equation. Phys. D. 32, 210 (1988).
[114]  LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. Steady State and Time Dependent Problems. SIAM, Philadelphia, (2007)
[115]  Liao, S-J.: A challenging nonlinear problem for numerical techniques. J. Comput. Appl. Math. 181, 467-472 (2005)
[116]  Maier, R.S.: The 192 Solutions of the HEUN Equation. Math. Comput. 76, 811-843 (2007)
[117]  MacLeod, A.J.: Chebyshev series solution of the Thomas—Fermi equation. Comput. Phys. Commun. 67, 389-391(1992)
[118] Magyari, E., Keller, B.: Heat transfer characteristics of the separation boundary flow induced by a continuous stretching surface. J. Phys. D: Appl. Phys. 32, 2876-2881(1999)
[119] Magyari, E., Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B – Fluids \textbf{19}, 109–-122 (2000)
[120]  Mandelzweig, V. B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with applications to nonlinear ODEs. Comput. Phys. Commun. \textbf{141}, 268–281 (2001)
[121]  Maohzu, Z., Sun, J., Zettl, A.: The Spectrum of Singular Sturm-Liouville Problems With Eigenparameter Dependent Boundary Conditions and Its Approximation. Results. Math. \textbf{63},  1311–-1330 (2013)
[122] Marletta, M., Pryce, J.D.: Automatic solution of Sturm-Liouville problems using the Pruess method. J.Comput. Appl. Math. 39, 57-78 (1992)
[123] Marshall, H.G., Boyd, J.P.: Solitons in a Continuously Stratified Equatorial Ocean. J. Phys. Oceanogr. 17, 1016-1031 (1987)
[124]  Mastroianni, G., V\'{e}rtesi, P.: \textit{Fourier Sums and Lagrange Interpolation on $(0;+\infty)$ and $(-\infty;+\infty)$}, in Frontiers in Approximation and Interpolation, Chapman and Hall/CRC, pp. 307–344, (2007)
[125] McLeod, J.B.: The existence of a non-negative solution of an ordinary differential equation arising in electromagnetic theory. Nonlinear Analysis, Theory. Methods Applications. \textbf{1}, 679–689 (1977)
[126] Miele, A., Aggarwal, A.K., Tietze, J.L.: Solution of Two-Point Boundary Value Problems with Jacobian Matrix Characterized by Large Positive Eigenvalues. J. Comput. Phys. \textbf{15}, 117–133 (1974)[
[127] Miles, J.W.: An Envelope Soliton Problem. SlAM J. Appl. Math. 41, 227-230 (1981)
[128] Mitra, A. K.: On the interaction of the type $\frac{\lambda x^2}{1+g x^2}$. J. Math. Phys. 19, 2018-2022 (1978)
[129]  Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion. 9, 1204-1209 (1968)
[130] Monro, D. M.: Interpolation by Fast Fourier and Chebyshev Transforms. Int. J. Numer. Met. Eng. 14, 1679-1692 (1979)
[131]  Motygin, O.V.: On evaluation of the Heun functions. arXiv:1506.03848v1 [math.NA] 11 Jun 2015
[132] Nayfeh, A.H., Problems in Perturbation, John Wiley and Sons, Inc. (1985)
[133] van Noorden,T.,  Rommes, J.: Computing a partial generalized real Schur form using the Jacobi-Davidson method. Numer. Linear Algebra Appl. \14, 197-215 (2007)
[134] Ockendon, H., Ockendon, J.R.: Viscous Flow, Cambridge University Press, Cambridge (1995)
[135] Olmos, D.:  A pseudospectral method of solution of Fisher’s equation. J.Comput. Appl. Math. 193, 219-242 (2006)
[136] O’Neil, M.E., Chorlton, F.: Viscous and Compressible Fluid Dynamics. 395 pp. John Wiley and Sons New-York-Chichester-Brisbane-Toronto (1989)
[137] Olver, F. W. J., Lozier, D. M., Boisvert, R. F., Clark, C. W.,eds. , NIST Handbook of Mathematical Functions, Cambridge University Press (2010)
[138]  Omrani, K.: The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation, Appl. Math. Comput. 180, 614-621 (2006)
[139] Omrani, K., Ayadi, M.: Finite Difference Discretization of the Benjamin-Bona-Mahony-Burgers Equation, Numer. Methods Partial Differential Eq. 24, 239-248 (2008)
[140] O’Regan, D.: Solvability of some Singular Boundary Value Problems on the Semi-Infinite Interval. Can. J. Math. \48, 143-158 (1996)
[141]  O’Regan, D.: Singular Nonlinear Differential Equations on the Half line. Topol. Method. Nonl. An. 8, 137-159 (1996)
[142] Pantokratoras, A., Fang, T.: Blasius flow with non-linear Rosseland thermal radiation. Meccanica  49, 1539-1545 (2014)
[143] Pathria, D., Morris, J.L.:Pseudo-spectral Solution of Nonlinear Schrodinger Equations. J.Comput. Phys. 87, 108-125 (1990)
[144] Plestenjak, B., Gheorghiu, C.I., Hochstenbach, M.E.: Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems. J. Comput. Phys. \textbf{298}, 585–601 (2015)
[145]  Pruess, S., Fulton, C.T.:  Mathematical Software for Sturm-Liouville Problems. ACM T. Math. Software. 19, 360-376 (1993)
[146] Pryce, J.D., Marletta, M.: A new multi-purpose software package for Schr\”{o}dinger and Sturm—Liouville computations. Comput. Phys. Commun. 62, 42-52 (1991)
[147] Pryce, J.D.: Classical and vector Sturm-Liouville problems: recent advances in singular-point analysis and shooting-type algorithms. J. Comput. Appl. Math.50, 455-470 (1994)
[148]  Pryce, J.D.: A Test Package for Sturm-Liouville Solvers. ACM T. Math. Software. 25, 21-57 (1999)
[149] Quarteroni A., Saleri, F.: Scientific Computing with MATLAB and Octave, 2nd. ed. Springer (2006)
[150]  Razavy, M.: A Model for Diffusion in a Bistable Potential Field. Phys. Lett. 72A,89-90 (1979)
[151] Razavy, M.: An exactly soluble Schrodinger equation with a bistable potential.Amer. J. Phys. 48, 285-288 (1980)
[152] Reddy, S.C., Trefethen, L.N.: Stability of the method of lines, Numer. Math. 62, 235-267 (1992)
[153]  Risken, H.: The Fokker -Planck Equation. Methods of Solution and Applications, Springer-Verlag Berlin Heidelberg New York Tokyo (1984)
[154] Robinson, M.P., Fairweather, G., Herbst, B.M.: On the Numerical Solution of the Cubic Schrodinger Equation in One Space Variable.Comput. Phys. 104, 277-284 (1993)
[155] Robinson, M.P., Fairweather, G.: Orthogonal spline collocation methods for Schr\”{o}dinger-type equations in one space variable. Numer. Math. 68, 355-376 (1994)
[156] Robinson, M.P.: The Solution of Nonlinear Schrodinger Equations Using Orthogonal Spline Collocation. Computers Math. Applic. 33, 39-57 (1997)
[157]  Ronveaux, A.: Factorization of the Heun as differential operator. Appl. Math. Comput. 141, 177-184 (2003)
[158] Rosales-Vera, M., Valencia, A.: Solutions of Falkner-Skan equation with heat transfer by Fourier series. Int. Commun. HeatMass. 37, 761-765 (2010)
[159] Rommes J.: Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems $Ax=\lambda Bx$ with $B$ singular. Math. Comput. 77, 995-1015 (2008)
[160] Sanz-Serna, J.M.: Methods for the Numerical Solution of the Nonlinear Schroedinger Equation. Math. Comput. 43, 21-27 (1984)
[161] Shen, J.: Stable and Efficient Spectral Methods in Unbounded Domains Using Laguerre Functions. SIAM J, Numer. Anal. 38, 1113-1133 (2000)
[162] Shen, J., Wang, L-L.: Some Recent Advances on Spectral Methods for Unbounded Domains. Commun. Comput. Phys. 5, 195-241 (2009)
[163] Shen, J., Tang, T., Wang, L-L.: Spectral Methods.Springer-Verlag, Berlin Heidelberg (2011)
[164] Shizgal, B., Spectral Methods in Chemistry and Physics. Applications to Kinetic Theory and Quantum Mechanics, Springer Dordrecht Heidelberg New York London, 2015
[165]  Simos, T.E.: Some embedded modified Runge Kutta methods for the numerical solution of some specific Schrodinger equations. J. Math. Chem. 24, 23-37 (1998)
[166] Simos, T.E.: An accurate finite difference method for the numerical solution of the Schr6dinger equation, J. Comput. Appl. Math. 91, 47-61 (1998)
[167]  Solomonoff, A.: A Fast Algorithm for Spectral Differentiation. J. Comput. Phys. 98, 174-177 (1992)
[168] Stenger, F.: A “Sinc-Galerkin” Method of Solution of Boundary Value Problems. Math. Comput. 33, 85-109 (1979)
[169] Stenger, F.: Numerical Methods based on Whittaker Cardinal or Sinc Functions. SIAM Rev. 23, 165-224 (1981)
[170] Stenger, F.: Matrices of Sinc methods. J. Comput. Appl. Math. 86, 297-310 (1997)
[171] Stenger, F.: Summary of sinc numerical methods. J. Comput. Appl. Math.121, 379-420 (2000)
[172] Sulem, P.L., Sulem, C., Patera, A.T.: Numerical Simulation of Singular Solutions to the Two-Dimensional Cubic Schrodinger Equation. Comm. Pure Appl. Math. \XXXVII, 755-778 (1984)
[173] Szeg\”{o}, G.: Orthogonal Polynomials. American Mathematical Society, New-York (1939) (Fourth edition, 1975)
[174] Taha,T.R., Ablowitz, M.J.: Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schrodinger Equation. J. Comput. Phys. 55, 203-230 (1984
[175] Teschl, G., Mathematical Methods in Quantum Mechanics. With Applications to Schrodinger Operators. AMS Graduate Studies in Mathematics, 157, Second Ed. (2014)
[176] Thacker, I.W., Watson, L.T., Kumar, S.K.: Magnetohydrodynamic free convection from a disk rotating in a vertical plane. Appt. Math. Modelling. 14, 527-535 (1990)
[177] Tourigny, Y., Sanz-Serna, J.M.: The Numerical Study of Blowup with Application to a Nonlinear Schrodinger Equation. J. Comput. Phys. 102, 407-416 (1992)
[178] Trefethen, L.N., Bau, D. III: Numerical Linear Algebra. SIAM (1997)
[179] Trefethen, L.N.: Computation of pseudospectra. Acta Numer. , 247-295 (1999)
[180] Trefethen, L.N.: Spectral Methods in MATLAB, SIAM (2000)
[181] Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators. Princeton University Press (2005)
[182] Trif, D.: On Sinc Methods for Partial Differential Equations. Seminar on Fixed Point Theory Cluj-Napoca, 3, 173-182 (2002) http://www.math.ubbcluj.ro/$\sim$ nodeacj/journal.htm
[183] Trif, D.: Matlab package for the Schrodinger equation. Math. Chem. 43, 1163-1176 (2007)
[184]  Van Stijn, TH. L., Van DE Vooren, A. I.: An accurate method for solving the Orr-Sommerfeld equation. Engn. Math. 14, 17-26 (1980)
[185] Wahlbin, L.: Error estimates for a Galerkin method for a class of model equations for long waves. Numer. Math. 23, 289-303 (1975)
[186] Wang, C.Y., Watson, L.T.: Viscous Flow between Rotating Discs with Injection on the Porous Disc.Angew. Math. Phys. 30,773-787 (1979)
[187] Wang, L-L.: Discrete transform of Laguerre function approach. http://www.ntu.edu.sg/home/lilian/book.htm (2011) Accessed 5 May 2014
[188] Watson, L.T.: Solving Finite Difference Approximations to Nonlinear Two-Point Boundary Value Problems by a Homotopy Method. SIAM J. Sci. Stat. Comput. 1, 467-480 (1980)
[189] Weideman, J.A.C.: The eigenvalues of Hermite and rational spectral differentiation matrices. Numer. Math. 61, 401-431 (1992)
[190] Weideman, J.A.C.,Cloot, A.: Spectral Methods and Mappings for Evolution Equations on the Infinite Line. Comput. Method. Appl. M.80, 467-481 (1990)
[191] Weideman, J.A.C., Reddy, S.C.: A MATLAB Differentiations Matrix Suite. ACM T. Math. Sofwtare. 26, 465-519 (2000)
[192]  von Winckel, G.: Fast Chebyshev Transform.http://www.mathworks.com/matlabcentral/fileexchange/4591-fast-chebyshev-transform–1d- (2004) Accessed 15 May 2015
[193] Whitehead, R.R., Watt, A., Flessas, G. P., Nagarajan, M.A.: Exact solutions of the Schrödinger equation  $\left(-\frac{d^{2}}{dx^{2}}+x^{2}+\frac{\lambda x^{2}}{1+gx^{2}}\right) \psi \left( x\right) =E\psi \left( x\right)$. J. Phys. A: Math. Gen. 15, 121-1226 (1982)
[194] Zakharov, V.E., Litvak, A.G.,  Rakova, E.I.,  Sergeev, A.M., Shvets, V.F.: Structural stability of wave collapse in media with a local instability. Sov. Phys. JETP67, 925-927 (1988)
[195] Zhao, S., Wei, G.W.: Comparison of the discrete singular convolution and three other numerical schemes for solving Fishers equation. SIAM J. Sci. Comput.
25, 127-147 (2003)

Related Posts