[1] S. Amat, J. Blenda, S. Busquier, A Steffensen’s type method with modified functions, Rev. Math. Univ. Parma 7 (2007) 125–133.
[2] S. Amat, S. Busquier, A two step Steffensen’s method under modified convergence conditions, J. Math. Anal. Appl. 324 (2006) 1084–1092.
[3] D.K.R. Babajee, M.Z. Dauhoo, An analysis of the properties of the variant of Newton’s method with third order convergence, Appl. Math. Comput. 183 (2006) 659–684.
[4] E. Catinas, The inexact, inexact perturbed and quasi Newton methods are equivalent models, Math. Comput. 74 (2005) 291–301.
[5] E. Catinas, Methods of Newton and Newton–Krylov type, Ed. Risoprint Cluj-Napoca, Romania, 2007.
[6] M. Grau, An improvement to the computing of nonlinear equation solution, Numer. Algor. 34 (2003) 1–12.
[7] Jisheng Kou, Yitian Li, Some variants of Chebyshev–Halley method with fifth-order convergence, Appl. Math. Comput. 189 (2007) 49–54.
[8] Jisheng Kou, Yitian Li, Modified Chebyshev–Halley methods with sixth-order convergence, Appl. Math. Comput. 188 (2007) 681–685.
[9] Jisheng Kou, Yitian Li, Xiuhua Wang, Some modifications of Newton’s method with fifth-order convergence, J. Comput. Appl. Math. 209 (2007) 146– 152.
[10] Nour Mahammand Aslom, Khalida Inayat, Fifth-order iterative method for solving nonlinear equations, Appl. Math. Comput. 188 (2007) 406–410.
[11] R.J. Sharma, A composite third order Newton–Steffensen method for solving nonlinear equations, Appl. Math. Comput. 169 (2005) 242–246.
[12] M. Frontini, Hermite interpolation and new iterative method for the computation of the roots of nonlinear equations, Calcolo. 40 (2003) 100–119.
[13] I. Pavaloiu, On a Steffensen–Hermite type method for approximating the solutions of nonlinear equations, Rev. Anal. Numér. Théor. Approx. 35 (2006) 87–94.
[14] I. Pavaloiu, Approximation of the root of equations by Aitken–Steffensen-type monotonic sequences, Calcolo. 32 (1995) 69–82.
[15] I. Pavaloiu, in: Dacia (Ed.), Solution of Equations by Interpolation, Cluj-Napoca, 1981 (in Romanian).
[16] I. Pavaloiu, E. Catinas, On a Steffensen type method, IEEE Computer Society, Proceedings of SYNASC 2007, 9th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, September 26–29, 2007, pp. 369–375.
[17] I. Pavaloiu, N. Pop, Interpolation and Applications, Ed. Risoprint Cluj-Napoca, 2005 (in Romanian).
[18] A. Ostrowski, Solution of Equations in Euclidian and Banach spaces, Academic Press, New York and London, 1973.
[19] A.B. Turowicz, Sur la dérivée d’ordre superieur d’une fonction inverse, Ann. Polon. Math. 8 (1960) 265–269.