Persistent memory of diffusing particles

Abstract

The variance of the advection-diffusion processes with variable coefficients is exactly decomposed as a sum of dispersion terms and memory terms consisting of correlations between velocity and initial positions. For random initial conditions, the memory terms quantify the departure of the preasymptotic variance from the time-linear diffusive behavior. For deterministic initial conditions, the memory terms account for the memory of the initial positions of the diffusing particles. Numerical simulations based on a global random walk algorithm show that the influence of the initial distribution of the cloud of particles is felt over hundreds of dimensionless times. In case of diffusion in random velocity fields with finite correlation range the particles forget the initial positions in the long-time limit and the variance is self-averaging, with clear tendency toward normal diffusion.

 

Authors

N. Suciu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

C. Vamoş
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

F.A. Radu
Computational Hydrosystems, Helmholtz Center for Environmental Research–UFZ, Leipzig, Germany 4
Institute of Geosciences, University of Jena, Jena, Germany

H. Vereecken
Research Center Jülich, Agrosphere Institute ICG-IV, Jülich, Germany

P. Knabner
Chair for Applied Mathematics I, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

Keywords

Cite this paper as:

Suciu, N., C. Vamoş, F.A. Radu, H. Vereecken, P. Knabner, Persistent memory of diffusing particles, Phys. Rev. E , 80 (2009), 061134,
doi: 10.1103/physreve.80.061134

References

see the expansion block below

PDF

https://www.researchgate.net/publication/43020210_Persistent_memory_of_diffusing_particles

soon

About this paper

Journal

Physical Review E

Publisher Name

American Physical Society

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

google scholar link

References

Paper in html format

References

[1] C. W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009).

[2] R. Zwanzig, Memory Effects in Irreversible Thermodynamics, Phys. Rev. 124, 983 (1961).
CrossRef (DOI)

[3] A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, Simple Measure of Memory for Dynamical Processes Described by a Generalized Langevin Equation, Phys. Rev. Lett. 95, 200601 (2005).
CrossRef (DOI)

[4] R. Balescu, Memory effects in plasma transport theory, Plasma Phys. Controlled Fusion 42,B1(2000).
CrossRef (DOI)

[5] R. Morgado, F. A. Oliveira, G. G. Batrouni, and A. Hansen, Relation between Anomalous and Normal Diffusion in Systems with Memory, Phys. Rev. Lett. 89, 100601 (2002).
CrossRef (DOI)

[6] F. Piazza and S. Lepri, Heat wave propagation in a nonlinear chain, Phys. Rev. B 79, 094306 (2009).
CrossRef (DOI)

[7] M. A. Despósito and A. D. Viñales, Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation, Phys. Rev. E 77, 031123 (2008).
CrossRef (DOI)

[8] F. N. C. Paraan, M. P. Solon, and J. P. Esguerra, Brownian motion of a charged particle driven internally by correlated noise, Phys. Rev. E 77, 022101 (2008).
CrossRef (DOI)

[9] A. J. Majda and P. R. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Phys. Rep. 314, 237 (1999).
CrossRef (DOI)

[10] C. Aslangul, J.-Ph. Bouchaud, A. Georges, N. Pottier, and D. Saint-James, Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice, J. Stat. Phys. 55, 461 (1989).
CrossRef (DOI)

[11] J. Eberhard, N. Suciu, and C. Vamoş, On the self-averaging of dispersion for transport in quasi-periodic random media, J. Phys. A: Math. Theor. 40, 597 (2007).
CrossRef (DOI)

[12] J. L. Doob, Stochastic Processes (Wiley, New York, 1990).

[13] P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations (Springer, Berlin, 1999).

[14] J.-P. Bouchaud, A. Georges, J. Koplik, A. Provata, and S. Red-ner, Superdiffusion in random velocity fields, Phys. Rev. Lett. 64, 2503 (1990).
CrossRef (DOI)

[15] J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep. 195, 127 (1990).
CrossRef (DOI)

[16] P. Castiglione, Diffusion coefficients as function of Kubo number in random fields,  J. Phys. A 33, 1975 (2000).
CrossRef (DOI)

[17] C. L. Zirbel, Lagrangian observations of homogeneous random environments, Adv. Appl. Probab. 33, 810 (2001).
CrossRef (DOI)

[18] N. Suciu, C. Vamoş, H. Vereecken, K. Sabelfeld, and P. Knab-ner, Revue d’Analyse Numérique et de Théorie de l’Approximation 37, 221 (2008).

[19] A. Fannjiang and T. Komorowski, Turbulent diffusion in Markovian flows, Ann. Appl. Probab. 9, 591 (1999).
CrossRef (DOI)

[20] P. K. Kitanidis, Prediction by the method of moments of transport in a heterogeneous formation, J. Hydrol. 102, 453 (1988).
CrossRef (DOI)

[21] N. Suciu, C. Vamoş, H. Vereecken, K. Sabelfeld, and P. Knab-ner, Mathematics Department, Friedrich-Alexander University Erlangen-Nuremberg, Preprint No. 324, 2008, url: http://www.am.uni-erlangen.de/en/prepreprints.2000.html

[22] H. Kesten and G. C. Papanicolaou, A limit theorem for turbulent diffusion, Commun. Math. Phys. 65, 97 (1979).
CrossRef (DOI)

[23] N. Suciu, C. Vamoş, and J. Eberhard, ??title??, Water Resour. Res. 42,W11504 (2006).

[24] N. Suciu (unpublished).

[25] N. Suciu, C. Vamoş, H. Vereecken, K. Sabelfeld, and P. Knab-ner, Water Resour. Res. 44, W08501 (2008).

[26] G. Sposito and G. Dagan, Predicting solute plume evolution in heterogeneous porous formations, Water Resour. Res. 30, 585 (1994) .
CrossRef (DOI)

[27] C. Vamoş,Ş.Şoltuz, and M. Crăciun, e-print arXiv:0709.2963.

[28] N. Suciu and C. Vamoş,in Monte Carlo and QuasiMonteCarlo Methods 2008, edited by P. L’Ecuyer and A. B. Owen(Springer, Heidelberg, to be published).

[29] C. L. Winter, C. M. Newman, and S. P. Neuman, A Perturbation Expansion for Diffusion in a Random Velocity Field, SIAM J.Appl. Math. 44,411(1984).
CrossRef (DOI)

[30] M. G. Trefry, F. P. Ruan, and D. McLaughlin, Water Resour.Res. 39, 1063 (2003).

[31] A. Compte and M. O. Cáceres, Fractional Dynamics in Random Velocity Fields, Phys. Rev. Lett. 81, 3140(1998).
CrossRef (DOI)

[32] C. Vamoş, N. Suciu, and H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comput. Phys. 186, 527 (2003).
CrossRef (DOI)

[33] N. Suciu, C. Vamoş, J. Vanderborght, H. Hardelauf, and H.Vereecken, Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res. 42, W04409 (2006).
CrossRef (DOI)

[34] P. Le Doussal and J. Machta, Annealed versus quenched diffusion coefficient in random media, Phys. Rev. B 40, 9427 (1989).
CrossRef (DOI)

[35] N. Suciu and C. Vamoş, Comment on “Nonstationary flow and nonergodic transport in random porous media” by G. Darvini and P. Salandin, Water Resour. Res. 43, W12601(2007).
CrossRef (DOI)

[36] A. M. Yaglom, Correlation Theory of Stationary and RelatedRandom Functions, Basic Results Vol. I (Springer, New York,1987).

[37] C. Vamoş, N. Suciu, H. Vereecken, J. Vanderborht, and O.Nitzsche, Forschungszentrum Jülich Report No. ICG-IV.00501, 2001 (unpublished).

[38] S. C. Ying, I. Vattulainen, J. Merikoski, T. Hjelt, and T. Ala-Nissila, Memory expansion for diffusion coefficients, Phys. Rev. B 58, 2170 (1998).
CrossRef (DOI)

[39] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

Related Posts

Menu