Abstract

We consider the equation \[F\left( x\right) =x-A\left( x\right)=0,\] where \(A\) is an operator from a Banach space \(X\) to itself. The generalized Steffensen method has the form

$$ x_{n+1}=x_{n}-\left[ x_{n},A\left( x_{n}\right) ;F\right] ^{-1}F\left(
x_{n}\right) $$
which is equivalent to
$$
x_{n+1}=A\left( x_{n}\right) -\left[ x_{n},A\left( x_{n}\right)
;F\right] ^{-1}F\left( A\left( x_{n}\right) \right) \label{f.1.4}%
$$

In this paper we give new semilocal convergence conditions which ensure the convergence of the method.

Original title (in French)

Sur la méthode de Steffensen pour la résolution des équations operationnelles nonlinéaires

Authors

Keywords

Steffensen method; divided differences; Banach space; semilocal convergence.

PDF

Cite this paper as:

I. Păvăloiu, Sur la méthode de Steffensen pour la résolution des équations operationnelles nonlinéaires, Revue Roumaine des Mathématiques pures et appliquées, 13 (1968) no. 1, pp. 857-861 (in French).

About this paper

Journal

Revue Roumaine des Mathématiques pures et appliquées

Publisher Name

Editura Academiei Republicii Socialiste Romane

DOI

Not available yet.

Print ISSN

Not available yet.

Online ISSN

Not available yet.

References

[1] J. W. Schmith, Konvergenzgeschwindigkeit der im Banachraum. ZAMM, 1966, 46, 2, 146-148.

[2] S. ULM, Obobscenie metoda Steffensena dlja resenija nelinejnah operatornıh uravneij.”Jur. vacisl. mat. mat. fiziki”, 1964, 4, 6, 1093-1097.

[3] A. M. OSTROVSKI, Resenie uravnenij i sistema uravnenij. ”Mat. izd-vo in. lit.”, 1963.

[4] L. V. KANTOROVICI, Funktional’naj analiz i prikladnaja matematika. ”UMN”, 1948 (28), 3

1968

Related Posts

No results found.