[1] I. K. Argyros. An error analysis for Steffensen’s method. Panamer. Math. J., 10(4):27–33, 2000.
[2] M. Balasz. A bilateral approximating method for finding the real roots of real equations. Rev. Anal. Numer. Theor. Approx., 21(2):111–117, 1992.
[3] B. A. Bel’tyukov. An analogue of the Aitken-Steffensen method with a controllable step (in russian). Zh. Vychisl. Mat. i Mat. Fiz., 27(6):803–817, 1987.
[4] C. Iancu, I. Pavaloiu, and I. Serb. Methodes it erative optimales de type Steffensen obtenues par interpolation inverse. Research Seminar on Functional Analysis and Numerical Methods, Preprint, 1:81–88, 1983.
[5] W. L. Johnson and R. D. Scholz. On Steffensen’s method. SIAM J. Numer. Anal., 5(2):296–302, 1968.
[6] M. A. Ostrowski. Solution of Equations and Systems of Equations. Academic Press, New York, 1980.
[7] I. Pavaloiu. Solutions of Equations by Interpolation (in Romanian). Dacia, Cluj-Napoca, Romania, 1981.
[8] I. Pavaloiu. Optimal problems concerning interpolation methods of solution of equations. Publ. l’Inst. Math. Beograd, 52 (66):113–126, 1992.
[9] I. Pavaloiu. On the monotonicity of the sequences of approximations obtained by Steffensen’s method. Mathematica (Cluj), 35 (58)(1):71–76, 1993.
[10] I. Pavaloiu. Bilateral approximations for the solutions of scalar equations. Rev. Anal. Numer. Theor. Approx. , 23(1):95–100, 1994.
[11] I. Pavaloiu. Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences. Calcolo, 32(1-2):69–82, 1995.
[12] I. Pavaloiu and N. Pop. Interpolation and Applications (in Romanian). Risoprint, Cluj-Napoca, Romania, 2005.
[13] J. R. Sharma. A composite third order Newton-Steffensen method for solving nonlinear equations. Appl. Math. Comput., 169(1):242–246, 2005.
[14] J. F. Traub. Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs, N.J., 1964.
[15] B. A. Turowicz. Sur les derivees d’ordre superieur d’une fonction inverse. Ann. Polon. Math., 8:265–269, 1960.