## Abstract

New fixed point results are presented for admissible pairs and maps (admissible in the sense of Gorniewicz) defined on subsets of a Frechet space E. The proof relies on the notion of a pseudo open set, degree theory, and on viewing E as the projective limit of a sequence of Banach spaces.

## Authors

**Ruyun MA
**Department of Mathematics, Northwest Normal University Lanzhou 730070, China

**Donal O’Regan
**Department of Mathematics, National University of Ireland Galway, Ireland

**Radu Precup**

Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

## Keywords

fixed point; admissible pair; degree theory

## Paper coordinates

R. Ma, D. O’Regan, R. Precup, *Fixed point theory for admissible pairs and maps in Frechet spaces via degree theory,* Fixed Point Theory 8 (2007) no. 2, 273-283.

## About this paper

##### Journal

Fixed Point Theory

##### Publisher Name

##### Print ISSN

##### Online ISSN

??

google scholar link

[1] R.P. Agarwal, M. Frigon and D. O’Regan, A survey of recent fixed point theory in Frechet spaces, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, Vol 1, 75-88, Kluwer Acad. Publ., Dordrecht, 2003.

[2] R.P. Agarwal and D. O’Regan, Countably P-concentrative pairs and the coincidence index, Applied Math. Letters, 12(2002), 439-444.

[3] R.P. Agarwal and D. O’Regan, A topological degree for pairs, Fixed Point Theory and Applications, Vol 4 (edited by Y.J. Cho, J.K. Kim and S.M. Kang), Nova Science Publishers, New York, 2003, 11-17.

[4] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic Publishers, Dordrecht, 1999.

[5] L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964.

[6] Z. Kucharski, A coincidence index, Bull. Acad. Polon. Sci., 24(1976), 245-252.

[7] M. Vath, Fixed point theorems and fixed point index for countably condensing maps, Topological Methods in Nonlinear Analysis, 13(1999), 341-363.