Sufficient convergence conditions for certain accelerated successive approximations

Abstract

We have recently characterized the q-quadratic convergence of the perturbed successive approximations. For a particular choice of the parameters, these sequences resulted as accelerated iterations toward a fixed point. We give here a Kantorovich-type result, which provides sufficient conditions ensuring the convergence of the accelerated iterates.

Authors

Emil Cătinaş (Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Emil Cătinaş

Keywords

fixed point; successive approximations; accelerated successive approximations; nonlinear system of equations in Rn; inexact Newton method; perturbed Newton method; ; local convergence; convergence order.

References

PDF

Cite this paper as:

E. Cătinaş, Sufficient convergence conditions for certain accelerated successive approximations. In: Mache D.H., Szabados J., de Bruin M.G. (eds) Trends and Applications in Constructive Approximation. ISNM International Series of Numerical Mathematics, vol 151, pp. 71-75, 2005. Birkhäuser Basel

About this paper

Book

Trends and Applications in Constructive Approximation. ISNM International Series of Numerical Mathematics, vol 151.

Publisher Name

Birkhäuser Basel

Print ISBN

978-3-7643-7124-1

Online ISBN

978-3-7643-7356-6

Google Scholar Profile

??

Paper (preprint) in HTML form

2005-Catinas-IBoMat-Sufficient-convergence-conditions-for-certain-accelerated-successive-approximati

Sufficient convergence conditions for certain accelerated successive approximations

Emil Cătinaş

Abstract

We have recently characterized the q q qqq-quadratic convergence of the perturbed successive approximations. For a particular choice of the parameters, these sequences resulted as accelerated iterations toward a fixed point.

We give here a Kantorovich-type result, which provides sufficient conditions ensuring the convergence of the accelerated iterates.

1 Introduction

Let ( X , ) ( X , ) (X,||*||)(X,\|\cdot\|)(X,) be a Banach space and G : Ω X Ω G : Ω X Ω G:Omega sube X rarr OmegaG: \Omega \subseteq X \rightarrow \OmegaG:ΩXΩ a nonlinear mapping having x int Ω x int Ω x^(**)in int Omegax^{*} \in \operatorname{int} \OmegaxintΩ as fixed point:
x = G ( x ) x = G x x^(**)=G(x^(**))x^{*}=G\left(x^{*}\right)x=G(x)
We are interested in the q q qqq-quadratic convergence toward x x x^(**)x^{*}x of the sequences of successive approximation type. Recall that an arbitrary sequence ( y k ) k 0 X y k k 0 X (y_(k))_(k >= 0)sub X\left(y_{k}\right)_{k \geq 0} \subset X(yk)k0X converges ( q q qqq-)quadratically to its limit y ¯ X y ¯ X bar(y)in X\bar{y} \in Xy¯X if [11], [12], [13]
inf { α [ 1 , + ) : Q α { y k } = + } = 2 inf α [ 1 , + ) : Q α y k = + = 2 i n f{alpha in[1,+oo):Q_(alpha){y_(k)}=+oo}=2\inf \left\{\alpha \in[1,+\infty): Q_{\alpha}\left\{y_{k}\right\}=+\infty\right\}=2inf{α[1,+):Qα{yk}=+}=2
where
Q α { y k } = { 0 , if y k = y ¯ , for all but finitely many k lim sup k + , y k + 1 y ¯ y k y ¯ α , if y k y ¯ , for all but finitely many k otherwise Q α y k = 0 ,       if  y k = y ¯ ,  for all but finitely many  k lim sup k + , y k + 1 y ¯ y k y ¯ α ,       if  y k y ¯ ,  for all but finitely many  k       otherwise  Q_(alpha){y_(k)}={[0","," if "y_(k)= bar(y)","" for all but finitely many "k],[l i m   s u p_({:[k rarr oo],[+oo","]:})(||y_(k+1)-( bar(y))||)/(||y_(k)-( bar(y))||^(alpha),)," if "y_(k)!= bar(y)","" for all but finitely many "k],[," otherwise "]:}Q_{\alpha}\left\{y_{k}\right\}= \begin{cases}0, & \text { if } y_{k}=\bar{y}, \text { for all but finitely many } k \\ \limsup _{\substack{k \rightarrow \infty \\+\infty,}} \frac{\left\|y_{k+1}-\bar{y}\right\|}{\left\|y_{k}-\bar{y}\right\|^{\alpha},} & \text { if } y_{k} \neq \bar{y}, \text { for all but finitely many } k \\ & \text { otherwise }\end{cases}Qα{yk}={0, if yk=y¯, for all but finitely many klim supk+,yk+1y¯yky¯α, if yky¯, for all but finitely many k otherwise 
In the case when 0 < Q 2 { y k } < + 0 < Q 2 y k < + 0 < Q_(2){y_(k)} < +oo0<Q_{2}\left\{y_{k}\right\}<+\infty0<Q2{yk}<+, one obtains the well known estimate of the form
y k + 1 y ¯ ( Q p { y k } + ε ) y k y ¯ 2 , for all k k 0 y k + 1 y ¯ Q p y k + ε y k y ¯ 2 ,  for all  k k 0 ||y_(k+1)-( bar(y))|| <= (Q_(p){y_(k)}+epsi)||y_(k)-( bar(y))||^(2),quad" for all "k >= k_(0)\left\|y_{k+1}-\bar{y}\right\| \leq\left(Q_{p}\left\{y_{k}\right\}+\varepsilon\right)\left\|y_{k}-\bar{y}\right\|^{2}, \quad \text { for all } k \geq k_{0}yk+1y¯(Qp{yk}+ε)yky¯2, for all kk0
(in the sense that for all ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 there exists k 0 0 k 0 0 k_(0) >= 0k_{0} \geq 0k00 such the above inequalities hold).
The successive approximations converging quadratically to x x x^(**)x^{*}x are characterized by the following result.
Theorem 1.1 [6] Assume that G G GGG is differentiable on a neighborhood D D DDD of x x x^(**)x^{*}x, with the derivative G G G^(')G^{\prime}G Lipschitz continuous:
G ( x ) G ( y ) L x y , x , y D . G ( x ) G ( y ) L x y , x , y D . ||G^(')(x)-G^(')(y)|| <= L||x-y||,quad AA x,y in D.\left\|G^{\prime}(x)-G^{\prime}(y)\right\| \leq L\|x-y\|, \quad \forall x, y \in D .G(x)G(y)Lxy,x,yD.
Suppose further that for a certain initial approximation x 0 D x 0 D x_(0)in Dx_{0} \in Dx0D, the successive approximations
x k + 1 = G ( x k ) , k 0 x k + 1 = G x k , k 0 x_(k+1)=G(x_(k)),quad k >= 0x_{k+1}=G\left(x_{k}\right), \quad k \geq 0xk+1=G(xk),k0
converge to x x x^(**)x^{*}x, and I G ( x k ) I G x k I-G^(')(x_(k))I-G^{\prime}\left(x_{k}\right)IG(xk) are invertible starting from a certain step.
Then the convergence is with order 2 if and only if G G G^(')G^{\prime}G has a zero eigenvalue and, starting from a certain step, the corrections x k + 1 x k x k + 1 x k x_(k+1)-x_(k)x_{k+1}-x_{k}xk+1xk are corresponding eigenvectors:
G ( x ) ( x k + 1 x k ) = 0 , k k 0 G x x k + 1 x k = 0 , k k 0 G^(')(x^(**))(x_(k+1)-x_(k))=0,quad AA k >= k_(0)G^{\prime}\left(x^{*}\right)\left(x_{k+1}-x_{k}\right)=0, \quad \forall k \geq k_{0}G(x)(xk+1xk)=0,kk0
This condition holds equivalently iff the errors x k x x k x x_(k)-x^(**)x_{k}-x^{*}xkx are corresponding eigenvectors:
G ( x ) ( x k x ) = 0 , k k 0 G x x k x = 0 , k k 0 G^(')(x^(**))(x_(k)-x^(**))=0,quad AA k >= k_(0)G^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)=0, \quad \forall k \geq k_{0}G(x)(xkx)=0,kk0
or iff
x k x + Ker G ( x ) , k k 0 x k x + Ker G x , k k 0 x_(k)inx^(**)+KerG^(')(x^(**)),quad AA k >= k_(0)x_{k} \in x^{*}+\operatorname{Ker} G^{\prime}\left(x^{*}\right), \quad \forall k \geq k_{0}xkx+KerG(x),kk0
This result implies that if G G G^(')G^{\prime}G has no eigenvalue 0 , there exists no sequence of successive approximations converging to x x x^(**)x^{*}x with order 2 . 1 2 . 1 2.^(1)2 .{ }^{1}2.1 In such a case, one may choose to consider for some ( δ k ) k 0 X δ k k 0 X (delta_(k))_(k >= 0)sub X\left(\delta_{k}\right)_{k \geq 0} \subset X(δk)k0X the perturbed successive approximations
(1) x k + 1 = G ( x k ) + δ k , k 0 (1) x k + 1 = G x k + δ k , k 0 {:(1)x_(k+1)=G(x_(k))+delta_(k)","quad k >= 0:}\begin{equation*} x_{k+1}=G\left(x_{k}\right)+\delta_{k}, \quad k \geq 0 \tag{1} \end{equation*}(1)xk+1=G(xk)+δk,k0
Their quadratic convergence is characterized by the following result, which does not require the existence of the eigenvalue 0 .
Theorem 1.2 [6] Suppose that G G GGG satisfies the assumptions of Theorem 1.1, and that the sequence (1) of perturbed successive approximations converges to x x x^(**)x^{*}x. Then the convergence is with q q qqq-order 2 iff
(2) G ( x k ) ( x k G ( x k ) ) + ( I G ( x k ) ) δ k = O ( x k G ( x k ) 2 ) , as k . (2) G x k x k G x k + I G x k δ k = O x k G x k 2 ,  as  k . {:(2)||G^(')(x_(k))(x_(k)-G(x_(k)))+(I-G^(')(x_(k)))delta_(k)||=O(||x_(k)-G(x_(k))||^(2))","" as "k rarr oo.:}\begin{equation*} \left\|G^{\prime}\left(x_{k}\right)\left(x_{k}-G\left(x_{k}\right)\right)+\left(I-G^{\prime}\left(x_{k}\right)\right) \delta_{k}\right\|=O\left(\left\|x_{k}-G\left(x_{k}\right)\right\|^{2}\right), \text { as } k \rightarrow \infty . \tag{2} \end{equation*}(2)G(xk)(xkG(xk))+(IG(xk))δk=O(xkG(xk)2), as k.
In [5] we have shown that if we write
δ k = ( I G ( x k ) ) 1 ( G ( x k ) ( G ( x k ) x k ) + γ k ) δ k = I G x k 1 G x k G x k x k + γ k delta_(k)=(I-G^(')(x_(k)))^(-1)(G^(')(x_(k))(G(x_(k))-x_(k))+gamma_(k))\delta_{k}=\left(I-G^{\prime}\left(x_{k}\right)\right)^{-1}\left(G^{\prime}\left(x_{k}\right)\left(G\left(x_{k}\right)-x_{k}\right)+\gamma_{k}\right)δk=(IG(xk))1(G(xk)(G(xk)xk)+γk)
with ( γ k ) k 0 X γ k k 0 X (gamma_(k))_(k >= 0)sub X\left(\gamma_{k}\right)_{k \geq 0} \subset X(γk)k0X, then condition
γ k = O ( x k G ( x k ) 2 ) , as k , γ k = O x k G x k 2 ,  as  k , gamma_(k)=O(||x_(k)-G(x_(k))||^(2)),quad" as "k rarr oo,\gamma_{k}=O\left(\left\|x_{k}-G\left(x_{k}\right)\right\|^{2}\right), \quad \text { as } k \rightarrow \infty,γk=O(xkG(xk)2), as k,
is equivalent to (2).
We have also noticed in [5] that, under the assumption G ( x ) q < 1 G ( x ) q < 1 ||G^(')(x)|| <= q < 1\left\|G^{\prime}(x)\right\| \leq q<1G(x)q<1 for all x x xxx in a certain neighborhood of x x x^(**)x^{*}x, and for a given K > 0 K > 0 K > 0K>0K>0, a natural choice (implied by the Banach lemma) for δ k δ k delta_(k)\delta_{k}δk is:
δ k = ( I + + G ( x k ) i k ) G ( x k ) ( G ( x k ) x k ) δ k = I + + G x k i k G x k G x k x k delta_(k)=(I+cdots+G^(')(x_(k))^(i_(k)))G^(')(x_(k))(G(x_(k))-x_(k))\delta_{k}=\left(I+\cdots+G^{\prime}\left(x_{k}\right)^{i_{k}}\right) G^{\prime}\left(x_{k}\right)\left(G\left(x_{k}\right)-x_{k}\right)δk=(I++G(xk)ik)G(xk)(G(xk)xk)
with i k i k i_(k)i_{k}ik such that
(3) q i k + 2 1 q K x k G ( x k ) (3) q i k + 2 1 q K x k G x k {:(3)(q^(ik)+2)/(1-q) <= K||x_(k)-G(x_(k))||:}\begin{equation*} \frac{q^{i k}+2}{1-q} \leq K\left\|x_{k}-G\left(x_{k}\right)\right\| \tag{3} \end{equation*}(3)qik+21qKxkG(xk)
When applying Theorem 1.2 to characterize the quadratic convergence of the resulted sequence
(4) x k + 1 = G ( x k ) + ( I + + G ( x k ) i k ) G ( x k ) ( G ( x k ) x k ) , k 0 (4) x k + 1 = G x k + I + + G x k i k G x k G x k x k , k 0 {:(4)x_(k+1)=G(x_(k))+(I+cdots+G^(')(x_(k))^(i_(k)))G^(')(x_(k))(G(x_(k))-x_(k))","quad k >= 0:}\begin{equation*} x_{k+1}=G\left(x_{k}\right)+\left(I+\cdots+G^{\prime}\left(x_{k}\right)^{i_{k}}\right) G^{\prime}\left(x_{k}\right)\left(G\left(x_{k}\right)-x_{k}\right), \quad k \geq 0 \tag{4} \end{equation*}(4)xk+1=G(xk)+(I++G(xk)ik)G(xk)(G(xk)xk),k0
with i k i k i_(k)i_{k}ik given by (3), we must assume that this sequence converges to the fixed point x x x^(**)x^{*}x. But is this assumption reasonable? The purpose of this note is to show that under certain natural conditions the sequence converges to x x x^(**)x^{*}x, so the answer is positive.

2 Main result

First of all, we remark that the fixed point problem is equivalent to solving
F ( x ) = 0 , with F ( x ) = x G ( x ) , F ( x ) = 0 ,  with  F ( x ) = x G ( x ) , F(x)=0," with "F(x)=x-G(x),F(x)=0, \text { with } F(x)=x-G(x),F(x)=0, with F(x)=xG(x),
for which the Newton method generates the iterates
(5) s k N = F ( x k ) 1 F ( x k ) x k + 1 = x k + s k N , k = 0 , 1 , (5) s k N = F x k 1 F x k x k + 1 = x k + s k N , k = 0 , 1 , {:[(5)s_(k)^(N)=-F^(')(x_(k))^(-1)F(x_(k))],[x_(k+1)=x_(k)+s_(k)^(N)","quad k=0","1","dots]:}\begin{align*} s_{k}^{N} & =-F^{\prime}\left(x_{k}\right)^{-1} F\left(x_{k}\right) \tag{5}\\ x_{k+1} & =x_{k}+s_{k}^{N}, \quad k=0,1, \ldots \end{align*}(5)skN=F(xk)1F(xk)xk+1=xk+skN,k=0,1,
In this setting, iterations (4) may be rewritten as
(6) x k + 1 = x k + ( I + G ( x k ) + + G ( x k ) i k + 1 ) ( G ( x k ) x k ) := x k + s k , k = 0 , 1 , with i k s.t. q i k + 2 1 q K F ( x k ) (6) x k + 1 = x k + I + G x k + + G x k i k + 1 G x k x k := x k + s k , k = 0 , 1 ,  with  i k  s.t.  q i k + 2 1 q K F x k {:[(6)x_(k+1)=x_(k)+(I+G^(')(x_(k))+dots+G^(')(x_(k))^(i_(k)+1))(G(x_(k))-x_(k))],[:=x_(k)+s_(k)","quad k=0","1","dots],[" with "i_(k)" s.t. "(q^(i_(k)+2))/(1-q) <= K||F(x_(k))||]:}\begin{align*} x_{k+1} & =x_{k}+\left(I+G^{\prime}\left(x_{k}\right)+\ldots+G^{\prime}\left(x_{k}\right)^{i_{k}+1}\right)\left(G\left(x_{k}\right)-x_{k}\right) \tag{6}\\ & :=x_{k}+s_{k}, \quad k=0,1, \ldots \\ & \text { with } i_{k} \text { s.t. } \frac{q^{i_{k}+2}}{1-q} \leq K\left\|F\left(x_{k}\right)\right\| \end{align*}(6)xk+1=xk+(I+G(xk)++G(xk)ik+1)(G(xk)xk):=xk+sk,k=0,1, with ik s.t. qik+21qKF(xk)
i.e., as quasi-Newton iterations (see, e.g., [11], [8], [7]).
We obtain the following sufficient Kantorovich-type conditions for the convergence to x x x^(**)x^{*}x of these iterates.
Theorem 2.1 Assume that G G GGG is differentiable on the domain Ω Ω Omega\OmegaΩ, with G G G^(')G^{\prime}G bounded on Ω Ω Omega\OmegaΩ by
(7) G ( x ) q < 1 , x Ω (7) G ( x ) q < 1 , x Ω {:(7)||G^(')(x)|| <= q < 1","quad AA x in Omega:}\begin{equation*} \left\|G^{\prime}(x)\right\| \leq q<1, \quad \forall x \in \Omega \tag{7} \end{equation*}(7)G(x)q<1,xΩ
and Lipschitz continuous:
G ( x ) G ( y ) L x y , x , y Ω G ( x ) G ( y ) L x y , x , y Ω ||G^(')(x)-G^(')(y)|| <= L||x-y||,quad AA x,y in Omega\left\|G^{\prime}(x)-G^{\prime}(y)\right\| \leq L\|x-y\|, \quad \forall x, y \in \OmegaG(x)G(y)Lxy,x,yΩ
Let x 0 Ω x 0 Ω x_(0)in Omegax_{0} \in \Omegax0Ω and K > 0 K > 0 K > 0K>0K>0 be chosen such that
(8) ν = ( L 2 ( 1 q ) 2 + K ( 1 + q ) ) F ( x 0 ) < 1 , (8) ν = L 2 ( 1 q ) 2 + K ( 1 + q ) F x 0 < 1 , {:(8)nu=((L)/(2(1-q)^(2))+K(1+q))||F(x_(0))|| < 1",":}\begin{equation*} \nu=\left(\frac{L}{2(1-q)^{2}}+K(1+q)\right)\left\|F\left(x_{0}\right)\right\|<1, \tag{8} \end{equation*}(8)ν=(L2(1q)2+K(1+q))F(x0)<1,
and suppose that B ¯ r ( x 0 ) = { x X : x x 0 r } Ω B ¯ r x 0 = x X : x x 0 r Ω bar(B)_(r)(x_(0))={x in X:||x-x_(0)|| <= r}sube Omega\bar{B}_{r}\left(x_{0}\right)=\left\{x \in X:\left\|x-x_{0}\right\| \leq r\right\} \subseteq \OmegaB¯r(x0)={xX:xx0r}Ω for
r = 1 ( 1 ν ) ( 1 q ) F ( x 0 ) r = 1 ( 1 ν ) ( 1 q ) F x 0 r=(1)/((1-nu)(1-q))||F(x_(0))||r=\frac{1}{(1-\nu)(1-q)}\left\|F\left(x_{0}\right)\right\|r=1(1ν)(1q)F(x0)
Then the elements of the sequence defined by (6) remain in the ball B ¯ r ( x 0 ) B ¯ r x 0 bar(B)_(r)(x_(0))\bar{B}_{r}\left(x_{0}\right)B¯r(x0) and converge to a fixed point x x x^(**)x^{*}x of G G GGG, which is unique in this ball. According to Theorem 1.2, the convergence is quadratic.
Proof. Recall first [11, 3.2.12] that the Lipschitz hypothesis on G G G^(')G^{\prime}G implies that
G ( y ) G ( x ) G ( x ) ( y x ) L 2 y x 2 , x , y Ω G ( y ) G ( x ) G ( x ) ( y x ) L 2 y x 2 , x , y Ω ||G(y)-G(x)-G^(')(x)(y-x)|| <= (L)/(2)||y-x||^(2),quad AA x,y in Omega\left\|G(y)-G(x)-G^{\prime}(x)(y-x)\right\| \leq \frac{L}{2}\|y-x\|^{2}, \quad \forall x, y \in \OmegaG(y)G(x)G(x)(yx)L2yx2,x,yΩ
while (7) attracts the existence of ( I G ( x ) ) 1 = I + G ( x ) + + G ( x ) k + I G ( x ) 1 = I + G ( x ) + + G ( x ) k + (I-G^(')(x))^(-1)=I+G^(')(x)+dots+G^(')(x)^(k)+dots\left(I-G^{\prime}(x)\right)^{-1}=I+G^{\prime}(x)+\ldots+G^{\prime}(x)^{k}+\ldots(IG(x))1=I+G(x)++G(x)k+ and the bound
( I G ( x ) ) 1 1 1 q , x Ω I G ( x ) 1 1 1 q , x Ω ||(I-G^(')(x))^(-1)|| <= (1)/(1-q),quad AA x in Omega\left\|\left(I-G^{\prime}(x)\right)^{-1}\right\| \leq \frac{1}{1-q}, \quad \forall x \in \Omega(IG(x))111q,xΩ
Our hypotheses imply the following inequalities:
s 0 1 1 q F ( x 0 ) s 0 1 1 q F x 0 ||s_(0)|| <= (1)/(1-q)||F(x_(0))||\left\|s_{0}\right\| \leq \frac{1}{1-q}\left\|F\left(x_{0}\right)\right\|s011qF(x0)
i.e., x 1 B ¯ r ( x 0 ) x 1 B ¯ r x 0 x_(1)in bar(B)_(r)(x_(0))x_{1} \in \bar{B}_{r}\left(x_{0}\right)x1B¯r(x0) and also
F ( x 1 ) = F ( x 1 ) F ( x 0 ) F ( x 0 ) s 0 N ( by ( 5 ) ) F ( x 1 ) F ( x 0 ) F ( x 0 ) s 0 + F ( x 0 ) ( s 0 N s 0 ) G ( x 1 ) G ( x 0 ) G ( x 0 ) s 0 + ( 1 + q ) s 0 N s 0 L 2 s 0 2 + ( 1 + q ) G ( x 0 ) i 0 + 2 ( I + G ( x 0 ) + ) F ( x 0 ) L 2 ( 1 + q + + q i 0 + 1 ) 2 F ( x 0 ) 2 + q i 0 + 2 1 q ( 1 + q ) F ( x 0 ) L ( 1 q i 0 + 2 ) 2 2 ( 1 q ) 2 F ( x 0 ) 2 + K ( 1 + q ) F ( x 0 ) 2 ν F ( x 0 ) F x 1 = F x 1 F x 0 F x 0 s 0 N (  by  ( 5 ) ) F x 1 F x 0 F x 0 s 0 + F x 0 s 0 N s 0 G x 1 G x 0 G x 0 s 0 + ( 1 + q ) s 0 N s 0 L 2 s 0 2 + ( 1 + q ) G x 0 i 0 + 2 I + G x 0 + F x 0 L 2 1 + q + + q i 0 + 1 2 F x 0 2 + q i 0 + 2 1 q ( 1 + q ) F x 0 L 1 q i 0 + 2 2 2 ( 1 q ) 2 F x 0 2 + K ( 1 + q ) F x 0 2 ν F x 0 {:[||F(x_(1))||=||F(x_(1))-F(x_(0))-F^(')(x_(0))s_(0)^(N)||quad(" by "(5))],[ <= ||F(x_(1))-F(x_(0))-F^(')(x_(0))s_(0)||+||F^(')(x_(0))(s_(0)^(N)-s_(0))||],[ <= ||G(x_(1))-G(x_(0))-G^(')(x_(0))s_(0)||+(1+q)||s_(0)^(N)-s_(0)||],[ <= (L)/(2)||s_(0)||^(2)+(1+q)||G^(')(x_(0))^(i_(0)+2)(I+G^(')(x_(0))+dots)F(x_(0))||],[ <= (L)/(2)(1+q+dots+q^(i_(0)+1))^(2)||F(x_(0))||^(2)+(q^(i_(0)+2))/(1-q)(1+q)||F(x_(0))||],[ <= (L(1-q^(i_(0)+2))^(2))/(2(1-q)^(2))||F(x_(0))||^(2)+K(1+q)||F(x_(0))||^(2)],[ <= nu||F(x_(0))||]:}\begin{aligned} \left\|F\left(x_{1}\right)\right\| & =\left\|F\left(x_{1}\right)-F\left(x_{0}\right)-F^{\prime}\left(x_{0}\right) s_{0}^{N}\right\| \quad(\text { by }(5)) \\ & \leq\left\|F\left(x_{1}\right)-F\left(x_{0}\right)-F^{\prime}\left(x_{0}\right) s_{0}\right\|+\left\|F^{\prime}\left(x_{0}\right)\left(s_{0}^{N}-s_{0}\right)\right\| \\ & \leq\left\|G\left(x_{1}\right)-G\left(x_{0}\right)-G^{\prime}\left(x_{0}\right) s_{0}\right\|+(1+q)\left\|s_{0}^{N}-s_{0}\right\| \\ & \leq \frac{L}{2}\left\|s_{0}\right\|^{2}+(1+q)\left\|G^{\prime}\left(x_{0}\right)^{i_{0}+2}\left(I+G^{\prime}\left(x_{0}\right)+\ldots\right) F\left(x_{0}\right)\right\| \\ & \leq \frac{L}{2}\left(1+q+\ldots+q^{i_{0}+1}\right)^{2}\left\|F\left(x_{0}\right)\right\|^{2}+\frac{q^{i_{0}+2}}{1-q}(1+q)\left\|F\left(x_{0}\right)\right\| \\ & \leq \frac{L\left(1-q^{i_{0}+2}\right)^{2}}{2(1-q)^{2}}\left\|F\left(x_{0}\right)\right\|^{2}+K(1+q)\left\|F\left(x_{0}\right)\right\|^{2} \\ & \leq \nu\left\|F\left(x_{0}\right)\right\| \end{aligned}F(x1)=F(x1)F(x0)F(x0)s0N( by (5))F(x1)F(x0)F(x0)s0+F(x0)(s0Ns0)G(x1)G(x0)G(x0)s0+(1+q)s0Ns0L2s02+(1+q)G(x0)i0+2(I+G(x0)+)F(x0)L2(1+q++qi0+1)2F(x0)2+qi0+21q(1+q)F(x0)L(1qi0+2)22(1q)2F(x0)2+K(1+q)F(x0)2νF(x0)
In an analogous fashion, we obtain by induction that for all k 2 k 2 k >= 2k \geq 2k2
F ( x k ) ( L 2 ( 1 q ) 2 + K ( 1 + q ) ) F ( x k 1 ) 2 ν F ( x k 1 ) ν k F ( x 0 ) F x k L 2 ( 1 q ) 2 + K ( 1 + q ) F x k 1 2 ν F x k 1 ν k F x 0 {:[||F(x_(k))|| <= ((L)/(2(1-q)^(2))+K(1+q))||F(x_(k-1))||^(2)],[ <= nu||F(x_(k-1))||],[vdots],[ <= nu^(k)||F(x_(0))||]:}\begin{aligned} \left\|F\left(x_{k}\right)\right\| & \leq\left(\frac{L}{2(1-q)^{2}}+K(1+q)\right)\left\|F\left(x_{k-1}\right)\right\|^{2} \\ & \leq \nu\left\|F\left(x_{k-1}\right)\right\| \\ & \vdots \\ & \leq \nu^{k}\left\|F\left(x_{0}\right)\right\| \end{aligned}F(xk)(L2(1q)2+K(1+q))F(xk1)2νF(xk1)νkF(x0)
x k x k 1 = s k 1 1 1 q F ( x k 1 ) ν k 1 1 q F ( x 0 ) x k x 0 x k x k 1 + + x 1 x 0 1 ( 1 ν ) ( 1 q ) F ( x 0 ) = r x k x k 1 = s k 1 1 1 q F x k 1 ν k 1 1 q F x 0 x k x 0 x k x k 1 + + x 1 x 0 1 ( 1 ν ) ( 1 q ) F x 0 = r {:[||x_(k)-x_(k-1)||=||s_(k-1)|| <= (1)/(1-q)||F(x_(k-1))|| <= (nu^(k-1))/(1-q)||F(x_(0))||],[||x_(k)-x_(0)|| <= ||x_(k)-x_(k-1)||+dots+||x_(1)-x_(0)|| <= (1)/((1-nu)(1-q))||F(x_(0))||=r]:}\begin{aligned} \left\|x_{k}-x_{k-1}\right\| & =\left\|s_{k-1}\right\| \leq \frac{1}{1-q}\left\|F\left(x_{k-1}\right)\right\| \leq \frac{\nu^{k-1}}{1-q}\left\|F\left(x_{0}\right)\right\| \\ \left\|x_{k}-x_{0}\right\| & \leq\left\|x_{k}-x_{k-1}\right\|+\ldots+\left\|x_{1}-x_{0}\right\| \leq \frac{1}{(1-\nu)(1-q)}\left\|F\left(x_{0}\right)\right\|=r \end{aligned}xkxk1=sk111qF(xk1)νk11qF(x0)xkx0xkxk1++x1x01(1ν)(1q)F(x0)=r
It follows that
x k + m x k x k + m x k + m 1 + + x k + 1 x k ν k + m 1 + + ν k ( 1 q ) F ( x 0 ) ν k ( 1 ν ) ( 1 q ) F ( x 0 ) x k + m x k x k + m x k + m 1 + + x k + 1 x k ν k + m 1 + + ν k ( 1 q ) F x 0 ν k ( 1 ν ) ( 1 q ) F x 0 {:[||x_(k+m)-x_(k)|| <= ||x_(k+m)-x_(k+m-1)||+dots+||x_(k+1)-x_(k)||],[ <= (nu^(k+m-1)+dots+nu^(k))/((1-q))||F(x_(0))||],[ <= (nu^(k))/((1-nu)(1-q))||F(x_(0))||]:}\begin{aligned} \left\|x_{k+m}-x_{k}\right\| & \leq\left\|x_{k+m}-x_{k+m-1}\right\|+\ldots+\left\|x_{k+1}-x_{k}\right\| \\ & \leq \frac{\nu^{k+m-1}+\ldots+\nu^{k}}{(1-q)}\left\|F\left(x_{0}\right)\right\| \\ & \leq \frac{\nu^{k}}{(1-\nu)(1-q)}\left\|F\left(x_{0}\right)\right\| \end{aligned}xk+mxkxk+mxk+m1++xk+1xkνk+m1++νk(1q)F(x0)νk(1ν)(1q)F(x0)
which shows that ( x k ) k 0 x k k 0 (x_(k))_(k >= 0)\left(x_{k}\right)_{k \geq 0}(xk)k0 is a Cauchy sequence, and therefore converges to a certain x B ¯ r ( x 0 ) x B ¯ r x 0 x^(**)in bar(B)_(r)(x_(0))x^{*} \in \bar{B}_{r}\left(x_{0}\right)xB¯r(x0). By the definition and continuity of F , x F , x F,x^(**)F, x^{*}F,x is a fixed point of G G GGG, which is unique in B ¯ r ( x 0 ) B ¯ r x 0 bar(B)_(r)(x_(0))\bar{B}_{r}\left(x_{0}\right)B¯r(x0) (and also in Ω Ω Omega\OmegaΩ ) since G G GGG is a contraction.
We note that condition (8) contains certain natural demands: F ( x 0 ) F x 0 ||F(x_(0))||\left\|F\left(x_{0}\right)\right\|F(x0) is sufficiently small (which holds, e.g., when x 0 x 0 x_(0)x_{0}x0 is sufficiently close to x x x^(**)x^{*}x ), q q qqq is sufficiently small (in accordance with the results in [6]), the Lipschitz constant L L LLL is sufficiently small (the graph of G G GGG is close to a constant in case X = R X = R X=RX=RX=R ) and K K KKK is sufficiently small (the linear systems are solved with increasingly precision, the iterates approaching to those given by the Newton method - see the classical results of Dennis and Moré [8]).
Acknowledgement: The author would like to thank Professor Detlef Mache for his kind support regarding the participation to the IBoMat04 Conference.

References

[1] I. Argyros, On the convergence of the modified contractions, J. Comp. Appl. Math., 55 (1994), 183-189.
[2] C. Brezinski, Dynamical systems and sequence transformations, J. Phys. A, 34 (2001), pp. 10659-10669.
[3] C. Brezinski and J.-P. Chehab, Nonlinear hybrid procedures and fixed point iterations, Numer. Funct. Anal. Optimiz., 19 (1998), pp. 465-487.
[4] E. Cătinaş, Inexact perturbed Newton methods and applications to a class of Krylov solvers, J. Optim. Theory Appl., 108 (2001), 543-570.
[5] E. Cătinaş, On accelerating the convergence of the successive approximations method, Rev. Anal. Numér. Théor. Approx., 30 (2001) no. 1, pp. 3-8.
[6] E. Cătinas, On the superlinear convergence of the successive approximations method, J. Optim. Theory Appl., 113 (2002) no. 3, pp. 473-485
[7] E. Cătinaş, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comp., (www.ams.org/mcom) to appear.
[8] J. E. Dennis, Jr., and J. J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods, Math. Comp., 28 (1974), 549560.
[9] Şt. Măruşter, Quasi-nonexpansivity and two classical methods for solving nonlinear equations, Proc. AMS, 62 (1977), 119-123.
[10] I. Moret, On the behaviour of approximate Newton methods, Computing, 37 (1986), pp. 185-193.
[11] J. M. Ortega, and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, New York, 1970.
[12] F. A. Potra, On Q Q QQQ-order and R R RRR-order of convergence, J. Optim. Theory Appl., 63 (1989), 415-431.
[13] W. C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia, 1998.
[14] D. A. Smith, W. F. Ford and A. Sidi, Extrapolation methods for vector sequences, SIAM Rev., 29 (1987), pp. 199-233.
"T. Popoviciu" Institute of Numerical Analysis (Romanian Academy)
P.O. Box 68-1
3400 Cluj-Napoca, Romania
Email address: ecatinas@ictp.acad.ro, ecatinas@cs.ubbcluj.ro

  1. 1 1 ^(1){ }^{1}1 In this case, the successive approximations cannot converge faster than q q qqq-linearly [6].
2005

Related Posts