The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and multistep iterations

Abstract

Authors

Stefan M. Soltuz
Tiberiu Popoviciu Institute of Numerical Analysis , Romanian Academy

Keywords

Krasnoselskij iterationMann iterationIshikawa iterationquasi-contractive operators

Paper coordinates

Ş.M. Şoltuz, The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and multistep iterationsMath. Commun. 12 (2007): 1, 53-61.

PDF

About this paper

Journal

Mathematical Communications

Publisher Name

Sveučilište Josipa Jurja Strossmayera u Osijeku Fakultet primijenjene matematike i informatike
Trg Ljudevita Gaja 6, Osijek

Print ISSN

1331-0623

Online ISSN

1848-8013

google scholar link

??

Paper (preprint) in HTML form

The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and multistep iterations

Ştefan M. Şoltuz
Abstract

We prove that Krasnoselskij, Mann, Ishikawa, Noor and multistep iterations are equivalent when applied to quasi-contractive operators.

Key words: Krasnoselskij iteration, Mann iteration, Ishikawa iteration, quasi-contractive operators

AMS subject classifications: 47H10
Received February 21, 2007
Accepted March 12, 2007

1. Introduction

Let XX be a real Banach space, DD a nonempty, convex subset of XX, and TT a selfmap of DD, let x0=u0Dx_{0}=u_{0}\in D. The Mann iteration, (see [5]), is defined by

un+1=(1αn)un+αnTun,u_{n+1}=\left(1-\alpha_{n}\right)u_{n}+\alpha_{n}Tu_{n}, (1)

where {αn}(0,1)\left\{\alpha_{n}\right\}\subset(0,1). The Krasnoselskij iteration, (see [4]), is defined by

xn+1=(1λ)xn+λTxn,x_{n+1}=(1-\lambda)x_{n}+\lambda Tx_{n}, (2)

where λ(0,1)\lambda\in(0,1).
Definition 1. [7] The operator T:XXT:X\rightarrow X satisfies condition ZZ (or is a quasicontraction) if and only if there exist real numbers a,b,ca,b,c satisfying 0<a<1,0<b,c<1/20<a<1,0<b,c<1/2 such that for each pair x,yx,y in XX, at least one condition is true

  • (z1)TxTyaxy\left(z_{1}\right)\|Tx-Ty\|\leq a\|x-y\|,

  • (z2)TxTyb(xTx+yTy)\left(z_{2}\right)\|Tx-Ty\|\leq b(\|x-Tx\|+\|y-Ty\|),

  • (z3)TxTyc(xTy+yTx)\left(z_{3}\right)\|Tx-Ty\|\leq c(\|x-Ty\|+\|y-Tx\|).

It is known, see Rhoades [8], that (z1),(z2)\left(z_{1}\right),\left(z_{2}\right) and (z3)\left(z_{3}\right) are independent conditions. Note that a map satisfying condition ZZ is independent, see Rhoades [7], of the class of strongly pseudocontractive maps.

00footnotetext: *Institute of Numerical Analysis "T. Popoviciu", P.O. Box 68-1, 400110 Cluj-Napoca, Romania, e-mail: smsoltuz@gmail.com

In [ 9,?9,? ] the following conjecture was given: "if the Mann iteration converges, then so does the Ishikawa iteration". In a series of papers [9], [10], [11], [12], [13], Professor B. E. Rhoades and the author, we have given a positive answer to this Conjecture, showing the equivalence between Mann and Ishikawa iterations for strongly and uniformly pseudocontractive maps.

In [2], the following open question was given: "are Krasnoselskij iteration and Mann iteration equivalent (in the sense of [9]) for enough large classes of mappings?" We shall give a positive answer to this question: if Krasnoselskij iteration converges, then Mann (and the corresponding Ishikawa iteration) also converges and conversely, dealing with maps satisfying condition ZZ. Note that Professor B. E. Rhoades and the author have already given a positive answer in [15] for the class of pseudocontractive maps.

Lemma 1 [[18]]. Let {an}\left\{a_{n}\right\} be a nonnegative sequence which satisfies the following inequality

an+1(1λn)an+σn,a_{n+1}\leq\left(1-\lambda_{n}\right)a_{n}+\sigma_{n}, (3)

where λn(0,1),nn0,n=1λn=\lambda_{n}\in(0,1),\forall n\geq n_{0},\sum_{n=1}^{\infty}\lambda_{n}=\infty, and σn=o(λn)\sigma_{n}=o\left(\lambda_{n}\right). Then limnan=0\lim_{n\rightarrow\infty}a_{n}=0.

2. Main results

Let F(T)F(T) denote the fixed point set with respect to DD for the map TT. Suppose that xF(T)x^{*}\in F(T).

Theorem 1. Let XX be a normed space, DD a nonempty, convex, closed subset of XX and T:DDT:D\rightarrow D an operator satisfying condition ZZ. If u0=x0Du_{0}=x_{0}\in D, then the following are true: if the Mann iteration (1) converges to xx^{*}, then the Krasnoselskij iteration (2) converges to xx^{*}. Conversely, if the Krasnoselskij iteration (2) converges to xx^{*}, then the Mann iteration (1) converges to xx^{*}, provided that αnA>0,n\alpha_{n}\geq A>0,\forall n\in\mathbb{N}.

Proof. Consider x,yDx,y\in D. Since TT satisfies condition ZZ, at least one of the conditions from (z1),(z2)\left(z_{1}\right),\left(z_{2}\right) and (z3)\left(z_{3}\right) is satisfied. If (z2)\left(z_{2}\right) holds, then

TxTy\displaystyle\|Tx-Ty\| b(xTx+yTy)\displaystyle\leq b(\|x-Tx\|+\|y-Ty\|)
b(xTx+(yx+xTx+TxTy)),\displaystyle\leq b(\|x-Tx\|+(\|y-x\|+\|x-Tx\|+\|Tx-Ty\|)),

thus

(1b)TxTybxy+2bxTx.(1-b)\|Tx-Ty\|\leq b\|x-y\|+2b\|x-Tx\|.

From 0b<10\leq b<1 one obtains,

TxTyb1bxy+2b1bxTx.\|Tx-Ty\|\leq\frac{b}{1-b}\|x-y\|+\frac{2b}{1-b}\|x-Tx\|.

If ( z3z_{3} ) holds, then one gets,

TxTy\displaystyle\|Tx-Ty\| c(xTy+yTx)\displaystyle\leq c(\|x-Ty\|+\|y-Tx\|)
c(xTx+TxTy+xy+xTx),\displaystyle\leq c(\|x-Tx\|+\|Tx-Ty\|+\|x-y\|+\|x-Tx\|),

hence,

(1c)TxTy\displaystyle(1-c)\|Tx-Ty\| cxy+2cxTx i.e.\displaystyle\leq c\|x-y\|+2c\|x-Tx\|\text{ i.e. }
TxTy\displaystyle\|Tx-Ty\| c1cxy+2c1cxTx\displaystyle\leq\frac{c}{1-c}\|x-y\|+\frac{2c}{1-c}\|x-Tx\|

Denote

δ:=max{a,b1b,c1c}\delta:=\max\left\{a,\frac{b}{1-b},\frac{c}{1-c}\right\}

to obtain

0δ<10\leq\delta<1

Finally, we get

TxTyδxy+2δxTx,x,yD\|Tx-Ty\|\leq\delta\|x-y\|+2\delta\|x-Tx\|,\forall x,y\in D (4)

Formula (4) was obtained as in [1].
We will prove the implication (i)(ii)(i)\Rightarrow(ii). Use (1) (2) and (4) with

x:=un\displaystyle x=u_{n}
y:=yn\displaystyle y=y_{n}

to obtain

un+1xn+1=xn+1un+1\displaystyle\left\|u_{n+1}-x_{n+1}\right\|=\left\|x_{n+1}-u_{n+1}\right\|
=xnunλxn+λunλun+αnun+λTxnλTun+λTunαnTun\displaystyle=\left\|x_{n}-u_{n}-\lambda x_{n}+\lambda u_{n}-\lambda u_{n}+\alpha_{n}u_{n}+\lambda Tx_{n}-\lambda Tu_{n}+\lambda Tu_{n}-\alpha_{n}Tu_{n}\right\|
(1λ)unxn+|αnλ|unTun+λTunTxn\displaystyle\leq(1-\lambda)\left\|u_{n}-x_{n}\right\|+\left|\alpha_{n}-\lambda\right|\left\|u_{n}-Tu_{n}\right\|+\lambda\left\|Tu_{n}-Tx_{n}\right\|
(1λ)unxn+|αnλ|unTun+λδunxn+2λδunTun\displaystyle\leq(1-\lambda)\left\|u_{n}-x_{n}\right\|+\left|\alpha_{n}-\lambda\right|\left\|u_{n}-Tu_{n}\right\|+\lambda\delta\left\|u_{n}-x_{n}\right\|+2\lambda\delta\left\|u_{n}-Tu_{n}\right\|
=(1λ(1δ))unxn+(|αnλ|+2λδ)unTun.\displaystyle=(1-\lambda(1-\delta))\left\|u_{n}-x_{n}\right\|+\left(\left|\alpha_{n}-\lambda\right|+2\lambda\delta\right)\left\|u_{n}-Tu_{n}\right\|.

Denote

an\displaystyle a_{n} :=unxn\displaystyle=\left\|u_{n}-x_{n}\right\|
λn\displaystyle\lambda_{n} :=λ(1δ)(0,1)\displaystyle=\lambda(1-\delta)\subset(0,1)
σn\displaystyle\sigma_{n} :=(|αnλ|+2λδ)unTun\displaystyle=\left(\left|\alpha_{n}-\lambda\right|+2\lambda\delta\right)\left\|u_{n}-Tu_{n}\right\|

Since limnunx=0,T\lim_{n\rightarrow\infty}\left\|u_{n}-x^{*}\right\|=0,T satisfies condition ZZ, and xF(T)x^{*}\in F(T), from (4) one has

0\displaystyle 0 unTun\displaystyle\leq\left\|u_{n}-Tu_{n}\right\|
unx+xTun\displaystyle\leq\left\|u_{n}-x^{*}\right\|+\left\|x^{*}-Tu_{n}\right\|
(δ+1)unx0 as n\displaystyle\leq(\delta+1)\left\|u_{n}-x^{*}\right\|\rightarrow 0\text{ as }n\rightarrow\infty

Hence limnunTun=0\lim_{n\rightarrow\infty}\left\|u_{n}-Tu_{n}\right\|=0; that is σn=o(λn)\sigma_{n}=o\left(\lambda_{n}\right). Lemma 1 leads to limnunxn=\lim_{n\rightarrow\infty}\left\|u_{n}-x_{n}\right\|= 0 . Use

0xxnunx+xnun0\leq\left\|x^{*}-x_{n}\right\|\leq\left\|u_{n}-x^{*}\right\|+\left\|x_{n}-u_{n}\right\|

to deduce

limnxn=x.\lim_{n\rightarrow\infty}x_{n}=x^{*}.

We will prove (ii)(i)(ii)\Rightarrow(i). That is, if Krasnoselskij iteration converges, then Mann iteration does converge. Use (4) with

x:=xn,\displaystyle x=x_{n},
y:=un,\displaystyle y=u_{n},

to obtain

xn+1un+1\displaystyle\left\|x_{n+1}-u_{n+1}\right\|
=xnunαnxn+αnun+αnxnλxn+λTxnαnTxn+αnTxnαnTun\displaystyle=\left\|x_{n}-u_{n}-\alpha_{n}x_{n}+\alpha_{n}u_{n}+\alpha_{n}x_{n}-\lambda x_{n}+\lambda Tx_{n}-\alpha_{n}Tx_{n}+\alpha_{n}Tx_{n}-\alpha_{n}Tu_{n}\right\|
=(1αn)(xnun)+(αnλ)xn(αnλ)xnTxn+αn(TxnTun)\displaystyle=\left\|\left(1-\alpha_{n}\right)\left(x_{n}-u_{n}\right)+\left(\alpha_{n}-\lambda\right)x_{n}-\left(\alpha_{n}-\lambda\right)x_{n}Tx_{n}+\alpha_{n}\left(Tx_{n}-Tu_{n}\right)\right\|
(1αn)xnun+|αnλ|xnTxn+αnTxnTun\displaystyle\leq\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\left|\alpha_{n}-\lambda\right|\left\|x_{n}-Tx_{n}\right\|+\alpha_{n}\left\|Tx_{n}-Tu_{n}\right\|
(1αn)xnun+|αnλ|xnTxn+αnδxnun+2αnδxnTxn\displaystyle\leq\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\left|\alpha_{n}-\lambda\right|\left\|x_{n}-Tx_{n}\right\|+\alpha_{n}\delta\left\|x_{n}-u_{n}\right\|+2\alpha_{n}\delta\left\|x_{n}-Tx_{n}\right\|
=(1αn(1δ))xnun+(|αnλ|+2αnδ)xnTxn.\displaystyle=\left(1-\alpha_{n}(1-\delta)\right)\left\|x_{n}-u_{n}\right\|+\left(\left|\alpha_{n}-\lambda\right|+2\alpha_{n}\delta\right)\left\|x_{n}-Tx_{n}\right\|.

Denote

an\displaystyle a_{n} :=xnun\displaystyle=\left\|x_{n}-u_{n}\right\|
λn\displaystyle\lambda_{n} :=αn(1δ)(0,1)\displaystyle=\alpha_{n}(1-\delta)\subset(0,1)
σn\displaystyle\sigma_{n} :=(|αnλ|+2αnδ)xnTxn\displaystyle=\left(\left|\alpha_{n}-\lambda\right|+2\alpha_{n}\delta\right)\left\|x_{n}-Tx_{n}\right\|

Since limnxnx=0,T\lim_{n\rightarrow\infty}\left\|x_{n}-x^{*}\right\|=0,T satisfies condition ZZ, and xF(T)x^{*}\in F(T), from (4) one has,

0\displaystyle 0 xnTxn\displaystyle\leq\left\|x_{n}-Tx_{n}\right\|
xnx+xTxn\displaystyle\leq\left\|x_{n}-x^{*}\right\|+\left\|x^{*}-Tx_{n}\right\|
(δ+1)xnx0 as n,\displaystyle\leq(\delta+1)\left\|x_{n}-x^{*}\right\|\rightarrow 0\text{ as }n\rightarrow\infty,

Hence limnxnTxn=0\lim_{n\rightarrow\infty}\left\|x_{n}-Tx_{n}\right\|=0, that is σn=o(λn)\sigma_{n}=o\left(\lambda_{n}\right). Lemma 1 leads to limnxnun=\lim_{n\rightarrow\infty}\left\|x_{n}-u_{n}\right\|= 0 . Thus,

xunxnun+xnx0 as n.\left\|x^{*}-u_{n}\right\|\leq\left\|x_{n}-u_{n}\right\|+\left\|x_{n}-x^{*}\right\|\rightarrow 0\text{ as }n\rightarrow\infty.

The Ishikawa iteration is defined (see [3]) by

xn+1\displaystyle x_{n+1} =(1αn)xn+αnTyn,\displaystyle=\left(1-\alpha_{n}\right)x_{n}+\alpha_{n}Ty_{n}, (5)
yn\displaystyle y_{n} =(1βn)xn+βnTxn,\displaystyle=\left(1-\beta_{n}\right)x_{n}+\beta_{n}Tx_{n},

where {αn}(0,1),{βn}[0,1)\left\{\alpha_{n}\right\}\subset(0,1),\left\{\beta_{n}\right\}\subset[0,1).
The following result is from [17].
Theorem 2 [[17]]. Let XX be a normed space, DD a nonempty, convex, closed subset of XX and T:DDT:D\rightarrow D an operator satisfying condition ZZ. If u0=x0Du_{0}=x_{0}\in D, then the following are equivalent:
(i) the Mann iteration (1) converges to xx^{*},
(ii) the Ishikawa iteration (5) converges to xx^{*}.

Theorems 1 and 2 lead to the following corollary.
Corollary 1. Let XX be a normed space, DD a nonempty, convex, closed subset of XX and T:DDT:D\rightarrow D an operator satisfying condition ZZ. If u0=x0D,αnA>0,nu_{0}=x_{0}\in D,\alpha_{n}\geq A>0,\forall n\in\mathbb{N}, then the following are equivalent:
(i) the Mann iteration (1) converges to xx^{*},
(ii) the Ishikawa iteration (5) converges to xx^{*}.
(iii) the Krasnoselskij iteration (2) converges to xx^{*}.

3. Further results

For v1Dv_{1}\in D, Noor introduced in [6] the following three-step procedure,

tn\displaystyle t_{n} =(1γn)vn+γnTvn,\displaystyle=\left(1-\gamma_{n}\right)v_{n}+\gamma_{n}Tv_{n}, (6)
wn\displaystyle w_{n} =(1βn)vn,+βnTtn,\displaystyle=\left(1-\beta_{n}\right)v_{n},+\beta_{n}Tt_{n},
vn+1\displaystyle v_{n+1} =(1αn)vn+αnTwn.\displaystyle=\left(1-\alpha_{n}\right)v_{n}+\alpha_{n}Tw_{n}.

The multi-step procedure of arbitrary fixed order p2p\geq 2, see [14], is defined by

ynp1\displaystyle y_{n}^{p-1} =(1βnp1)xn+βnp1Txn,\displaystyle=\left(1-\beta_{n}^{p-1}\right)x_{n}+\beta_{n}^{p-1}Tx_{n}, (7)
yni\displaystyle y_{n}^{i} =(1βni)xn+βniTyni+1,i=1,,p2;\displaystyle=\left(1-\beta_{n}^{i}\right)x_{n}+\beta_{n}^{i}Ty_{n}^{i+1},i=1,\ldots,p-2;
xn+1\displaystyle x_{n+1} =(1αn)xn+αnTyn1,\displaystyle=\left(1-\alpha_{n}\right)x_{n}+\alpha_{n}Ty_{n}^{1},

where {αn}(0,1),{βni}[0,1),1ip1\left\{\alpha_{n}\right\}\subset(0,1),\left\{\beta_{n}^{i}\right\}\subset[0,1),1\leq i\leq p-1.
We shall generalize the above Theorem 2, see also [17], by proving that (7) and (1) are equivalent.

Theorem 3. Let XX be a normed space, DD a nonempty, convex, closed subset of XX and T:DDT:D\rightarrow D an operator satisfying condition ZZ. If u0=x0Du_{0}=x_{0}\in D, then the following are equivalent:
(i) the Mann iteration (1) converges to xx^{*},
(ii) the iteration (7) converges to xx^{*}.

Proof. We shall use (4) :

TxTyδxy+2δxTx,x,yD.\|Tx-Ty\|\leq\delta\|x-y\|+2\delta\|x-Tx\|,\forall x,y\in D.

We will prove the implication (i)(ii)(i)\Rightarrow(ii). Suppose that limnun=x\lim_{n\rightarrow\infty}u_{n}=x^{*}. Using limnxnun=0\lim_{n\rightarrow\infty}\left\|x_{n}-u_{n}\right\|=0, and 0xxnunx+xnun0\leq\left\|x^{*}-x_{n}\right\|\leq\left\|u_{n}-x^{*}\right\|+\left\|x_{n}-u_{n}\right\| we get

limnxn=x\lim_{n\rightarrow\infty}x_{n}=x^{*}

Using now (1) (7) and (4) with

x:=un,\displaystyle x=u_{n},
y:=yn1,\displaystyle y=y_{n}^{1},

we have

un+1xn+1\displaystyle\left\|u_{n+1}-x_{n+1}\right\|\leq (1αn)(unxn)+αn(TunTyn1)\displaystyle\left\|\left(1-\alpha_{n}\right)\left(u_{n}-x_{n}\right)+\alpha_{n}\left(Tu_{n}-Ty_{n}^{1}\right)\right\| (8)
\displaystyle\leq (1αn)unxn+αnTunTyn1\displaystyle\left(1-\alpha_{n}\right)\left\|u_{n}-x_{n}\right\|+\alpha_{n}\left\|Tu_{n}-Ty_{n}^{1}\right\|
\displaystyle\leq (1αn)unxn+αnδunyn1+\displaystyle\left(1-\alpha_{n}\right)\left\|u_{n}-x_{n}\right\|+\alpha_{n}\delta\left\|u_{n}-y_{n}^{1}\right\|+
+2αnδunTun.\displaystyle+2\alpha_{n}\delta\left\|u_{n}-Tu_{n}\right\|.

Using (4) with x:=un,y:=yn1x:=u_{n},y:=y_{n}^{1}, we have

unyn1\displaystyle\left\|u_{n}-y_{n}^{1}\right\|\leq (1βn1)(unxn)+βn1(unTxn)\displaystyle\left\|\left(1-\beta_{n}^{1}\right)\left(u_{n}-x_{n}\right)+\beta_{n}^{1}\left(u_{n}-Tx_{n}\right)\right\| (9)
\displaystyle\leq (1βn1)unxn+βn1unTxn\displaystyle\left(1-\beta_{n}^{1}\right)\left\|u_{n}-x_{n}\right\|+\beta_{n}^{1}\left\|u_{n}-Tx_{n}\right\|
\displaystyle\leq (1βn1)unxn+βn1unTun+\displaystyle\left(1-\beta_{n}^{1}\right)\left\|u_{n}-x_{n}\right\|+\beta_{n}^{1}\left\|u_{n}-Tu_{n}\right\|+
+βn1TunTxn\displaystyle+\beta_{n}^{1}\left\|Tu_{n}-Tx_{n}\right\|
\displaystyle\leq (1βn1)unxn+βn1unTun+\displaystyle\left(1-\beta_{n}^{1}\right)\left\|u_{n}-x_{n}\right\|+\beta_{n}^{1}\left\|u_{n}-Tu_{n}\right\|+
+βn1δunxn+2δβn1unTun\displaystyle+\beta_{n}^{1}\delta\left\|u_{n}-x_{n}\right\|+2\delta\beta_{n}^{1}\left\|u_{n}-Tu_{n}\right\|
=\displaystyle= (1βn1(1δ))unxn+\displaystyle\left(1-\beta_{n}^{1}(1-\delta)\right)\left\|u_{n}-x_{n}\right\|+
+βn1unTun(1+2δ).\displaystyle+\beta_{n}^{1}\left\|u_{n}-Tu_{n}\right\|(1+2\delta).

Relations (8) and (9) lead to

un+1xn+1\displaystyle\left\|u_{n+1}-x_{n+1}\right\|\leq (1αn)unxn+\displaystyle\left(1-\alpha_{n}\right)\left\|u_{n}-x_{n}\right\|+ (10)
+αnδ(1βn1(1δ))unxn+\displaystyle+\alpha_{n}\delta\left(1-\beta_{n}^{1}(1-\delta)\right)\left\|u_{n}-x_{n}\right\|+
+αnβn1δunTun(1+2δ)+\displaystyle+\alpha_{n}\beta_{n}^{1}\delta\left\|u_{n}-Tu_{n}\right\|(1+2\delta)+
+αnδunyn\displaystyle+\alpha_{n}\delta\left\|u_{n}-y_{n}\right\|
=\displaystyle= (1αn(1δ(1βn1(1δ))))unxn+\displaystyle\left(1-\alpha_{n}\left(1-\delta\left(1-\beta_{n}^{1}(1-\delta)\right)\right)\right)\left\|u_{n}-x_{n}\right\|+
+αnδunTun(βn1(1+2δ)+2δ).\displaystyle+\alpha_{n}\delta\left\|u_{n}-Tu_{n}\right\|\left(\beta_{n}^{1}(1+2\delta)+2\delta\right).

Denote by

an\displaystyle a_{n} :=unxn\displaystyle=\left\|u_{n}-x_{n}\right\|
λn\displaystyle\lambda_{n} :=αn(1δ(1βn1(1δ)))(0,1),\displaystyle=\alpha_{n}\left(1-\delta\left(1-\beta_{n}^{1}(1-\delta)\right)\right)\subset(0,1),
σn\displaystyle\sigma_{n} :=αnδunTun(βn1(1+2δ)+2δ).\displaystyle=\alpha_{n}\delta\left\|u_{n}-Tu_{n}\right\|\left(\beta_{n}^{1}(1+2\delta)+2\delta\right).

Since limnunx=0,T\lim_{n\rightarrow\infty}\left\|u_{n}-x^{*}\right\|=0,T satisfies condition ZZ, and xF(T)x^{*}\in F(T), from (4) we obtain

0\displaystyle 0 unTun\displaystyle\leq\left\|u_{n}-Tu_{n}\right\|
unx+xTun\displaystyle\leq\left\|u_{n}-x^{*}\right\|+\left\|x^{*}-Tu_{n}\right\|
(δ+1)unx0 as n.\displaystyle\leq(\delta+1)\left\|u_{n}-x^{*}\right\|\rightarrow 0\text{ as }n\rightarrow\infty.

Hence limnunTun=0\lim_{n\rightarrow\infty}\left\|u_{n}-Tu_{n}\right\|=0; that is σn=o(λn)\sigma_{n}=o\left(\lambda_{n}\right). Lemma 1 leads to limnunxn=\lim_{n\rightarrow\infty}\left\|u_{n}-x_{n}\right\|= 0 .

We will prove now that if multistep iteration converges then Mann iteration does. Using (4) with

x:=yn1,\displaystyle x=y_{n}^{1},
y:=un,\displaystyle y=u_{n},

we obtain

xn+1un+1\displaystyle\left\|x_{n+1}-u_{n+1}\right\|\leq (1αn)(xnun)+αn(Tyn1Tun)\displaystyle\left\|\left(1-\alpha_{n}\right)\left(x_{n}-u_{n}\right)+\alpha_{n}\left(Ty_{n}^{1}-Tu_{n}\right)\right\| (11)
\displaystyle\leq (1αn)xnun+αnTyn1Tun\displaystyle\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\left\|Ty_{n}^{1}-Tu_{n}\right\|
\displaystyle\leq (1αn)xnun+αnδyn1un+\displaystyle\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\delta\left\|y_{n}^{1}-u_{n}\right\|+
+2αnδyn1Tyn1.\displaystyle+2\alpha_{n}\delta\left\|y_{n}^{1}-Ty_{n}^{1}\right\|.

The following relation holds

yn1un\displaystyle\left\|y_{n}^{1}-u_{n}\right\|\leq (1βn1)(xnun)+βn1(Txnun)\displaystyle\left\|\left(1-\beta_{n}^{1}\right)\left(x_{n}-u_{n}\right)+\beta_{n}^{1}\left(Tx_{n}-u_{n}\right)\right\| (12)
\displaystyle\leq (1βn1)xnun+βn1Txnun\displaystyle\left(1-\beta_{n}^{1}\right)\left\|x_{n}-u_{n}\right\|+\beta_{n}^{1}\left\|Tx_{n}-u_{n}\right\|
\displaystyle\leq (1βn1)xnun+βn1Txnxn+\displaystyle\left(1-\beta_{n}^{1}\right)\left\|x_{n}-u_{n}\right\|+\beta_{n}^{1}\left\|Tx_{n}-x_{n}\right\|+
+βn1xnun\displaystyle+\beta_{n}^{1}\left\|x_{n}-u_{n}\right\|
\displaystyle\leq xnun+βn1Txnxn.\displaystyle\left\|x_{n}-u_{n}\right\|+\beta_{n}^{1}\left\|Tx_{n}-x_{n}\right\|.

Substituting (12) in (11), we obtain

xn+1un+1\displaystyle\left\|x_{n+1}-u_{n+1}\right\|\leq (1αn)xnun+\displaystyle\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+ (13)
+αnδ(xnun+βn1Txnxn)+\displaystyle+\alpha_{n}\delta\left(\left\|x_{n}-u_{n}\right\|+\beta_{n}^{1}\left\|Tx_{n}-x_{n}\right\|\right)+
+2αnδyn1Tyn1\displaystyle+2\alpha_{n}\delta\left\|y_{n}^{1}-Ty_{n}^{1}\right\|
\displaystyle\leq (1(1δ)αn)xnun+αnβn1δTxnxn+\displaystyle\left(1-(1-\delta)\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\beta_{n}^{1}\delta\left\|Tx_{n}-x_{n}\right\|+
+2αnδyn1Tyn1.\displaystyle+2\alpha_{n}\delta\left\|y_{n}^{1}-Ty_{n}^{1}\right\|.

Denote by

an\displaystyle a_{n} :=xnun\displaystyle=\left\|x_{n}-u_{n}\right\|
λn\displaystyle\lambda_{n} :=αn(1δ)(0,1)\displaystyle=\alpha_{n}(1-\delta)\subset(0,1)
σn\displaystyle\sigma_{n} :=αnβn1δTxnxn+2αnδyn1Tyn1\displaystyle=\alpha_{n}\beta_{n}^{1}\delta\left\|Tx_{n}-x_{n}\right\|+2\alpha_{n}\delta\left\|y_{n}^{1}-Ty_{n}^{1}\right\|

Since limnxnx=0,T\lim_{n\rightarrow\infty}\left\|x_{n}-x^{*}\right\|=0,T satisfies condition ZZ, and xF(T)x^{*}\in F(T), from (4) we obtain

0\displaystyle 0 xnTxn\displaystyle\leq\left\|x_{n}-Tx_{n}\right\|
xnx+xTxn\displaystyle\leq\left\|x_{n}-x^{*}\right\|+\left\|x^{*}-Tx_{n}\right\|
(δ+1)xnx0 as n\displaystyle\leq(\delta+1)\left\|x_{n}-x^{*}\right\|\rightarrow 0\text{ as }n\rightarrow\infty

Note that βni[0,1),n1,1ip1\beta_{n}^{i}\in[0,1),\forall n\geq 1,1\leq i\leq p-1, and use (4) to obtain

0\displaystyle 0 yn1Tyn1\displaystyle\leq\left\|y_{n}^{1}-Ty_{n}^{1}\right\|
yn1x+xTyn1\displaystyle\leq\left\|y_{n}^{1}-x^{*}\right\|+\left\|x^{*}-Ty_{n}^{1}\right\|
(δ+1)yn1x(δ+1)[(1βn1)xnx+βn1Tyn2x]\displaystyle\leq(\delta+1)\left\|y_{n}^{1}-x^{*}\right\|\leq(\delta+1)\left[\left(1-\beta_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}^{1}\left\|Ty_{n}^{2}-x^{*}\right\|\right]
(δ+1)[xnx+δyn2x]\displaystyle\leq(\delta+1)\left[\left\|x_{n}-x^{*}\right\|+\delta\left\|y_{n}^{2}-x^{*}\right\|\right]
(δ+1)[xnx+yn2x]\displaystyle\leq(\delta+1)\left[\left\|x_{n}-x^{*}\right\|+\left\|y_{n}^{2}-x^{*}\right\|\right]
(δ+1)[xnx+(1βn2)xnx+βn2Tyn3x]\displaystyle\leq(\delta+1)\left[\left\|x_{n}-x^{*}\right\|+\left(1-\beta_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}^{2}\left\|Ty_{n}^{3}-x^{*}\right\|\right]
(δ+1)[xnx+xnx+Tyn3x]\displaystyle\leq(\delta+1)\left[\left\|x_{n}-x^{*}\right\|+\left\|x_{n}-x^{*}\right\|+\left\|Ty_{n}^{3}-x^{*}\right\|\right]
(δ+1)[2xnx+δyn3x]\displaystyle\leq(\delta+1)\left[2\left\|x_{n}-x^{*}\right\|+\delta\left\|y_{n}^{3}-x^{*}\right\|\right]
(δ+1)[2xnx+yn3x]\displaystyle\leq(\delta+1)\left[2\left\|x_{n}-x^{*}\right\|+\left\|y_{n}^{3}-x^{*}\right\|\right]\ldots
(δ+1)[(p2)xnx+ynp1x]\displaystyle\leq(\delta+1)\left[(p-2)\left\|x_{n}-x^{*}\right\|+\left\|y_{n}^{p-1}-x^{*}\right\|\right]
(δ+1)[(p2)xnx+(1βnp1)xnx+βnp1Txnx]\displaystyle\leq(\delta+1)\left[(p-2)\left\|x_{n}-x^{*}\right\|+\left(1-\beta_{n}^{p-1}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}^{p-1}\left\|Tx_{n}-x^{*}\right\|\right]
(δ+1)[(p1)xnx+Txnx]\displaystyle\leq(\delta+1)\left[(p-1)\left\|x_{n}-x^{*}\right\|+\left\|Tx_{n}-x^{*}\right\|\right]
(δ+1)[(p1)xnx+δxnx]\displaystyle\leq(\delta+1)\left[(p-1)\left\|x_{n}-x^{*}\right\|+\delta\left\|x_{n}-x^{*}\right\|\right]
=(δ+1)xnx[(p1)+δ]0 as n,\displaystyle=(\delta+1)\left\|x_{n}-x^{*}\right\|[(p-1)+\delta]\rightarrow 0\text{ as }n\rightarrow\infty,

Hence limnxnTxn=0\lim_{n\rightarrow\infty}\left\|x_{n}-Tx_{n}\right\|=0 and limnyn1Tyn1=0\lim_{n\rightarrow\infty}\left\|y_{n}^{1}-Ty_{n}^{1}\right\|=0 that is σn=o(λn)\sigma_{n}=o\left(\lambda_{n}\right). Lemma 1 and (13) lead to limnxnun=0\lim_{n\rightarrow\infty}\left\|x_{n}-u_{n}\right\|=0. Thus, we get xunxnun+xnx0\left\|x^{*}-u_{n}\right\|\leq\left\|x_{n}-u_{n}\right\|+\left\|x_{n}-x^{*}\right\|\rightarrow 0.

Theorem 3 and Corollary 1 lead to the following result.
Corollary 2. Let XX be a normed space, DD a nonempty, convex, closed subset of XX and T:DDT:D\rightarrow D an operator satisfying condition ZZ. If the initial point is the same for all iterations, αnA>0,n\alpha_{n}\geq A>0,\forall n\in\mathbb{N}, then the following are equivalent:
(i) the Mann iteration (1) converges to xx^{*};
(ii) the Ishikawa iteration (5) converges to xx^{*};
(iii) the iteration (7) converges to xx^{*}.
(iii) the Noor iteration (6) converges to xx^{*},
(iv) the Krasnoselskij iteration (2) converges to xx^{*}.

Acknowledgment. The author is indebted to referee for carefully reading the paper and for making useful suggestions.

References

[1] V. Berinde, On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Math. Univ. Comenianae LXXIII(2004), 119-126.
[2] V. Berinde, M. Berinde, The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpatian J. Math. 21(2005), 13-20.
[3] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44(1974), 147-150.
[4] M. A. KrasnoselskiJ, Two remarks on the method of succesive approximations, Uspehi Mat. Nauk. 10(1955), 123-127.
[5] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953), 506-510.
[6] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251(2000), 217-229.
[7] B. E. Rhoades, Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. 196(1974), 161-176.
[8] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226(1977), 257-290.
[9] B. E. Rhoades, Ş. M. Şoltuz, On the equivalence of Mann and Ishikawa iteration methods, Int. J. Math. Math. Sci. 2003(2003), 451-459.
[10] B. E. Rhoades, Ş. M. Şoltuz, The equivalence of the Mann and Ishikawa iteration for non-Lipschitzian operators, Int. J. Math. Math. Sci. 42(2003), 2645-2652.
[11] B. E. Rhoades, Ş. M. Şoltuz, The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically pseudocontractive map, J. Math. Anal. Appl. 283(2003), 681-688.
[12] B. E. Rhoades, Ş. M. Şoltuz, The equivalence of Mann and Ishikawa iteration for a Lipschitzian psi-uniformly pseudocontractive and psi-uniformly accretive maps, Tamkang J. Math., 35(2004), 235-245.
[13] B. E. Rhoades, Ş. M. Şoltuz, The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl. 289(2004), 266-278.
[14] B. E. Rhoades, Ş. M. Şoltuz, The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Analysis 58(2004), 219-228.
[15] B. E. Rhoades, Ş. M. Şoltuz, The equivalence between the Krasnoselskij, Mann and Ishikawa iterations, Revue d’analyse numerique et de theorie de l’approximation 𝟑𝟔(2006)\mathbf{36}(2006), to appear.
[16] B. E. Rhoades, Ş. M. Şoltuz, The equivalence between the TT-stabilities of Mann and Ishikawa iterations J. Math. Anal. Appl. 318(2006), 472-475.
[17] Ş. M. Şoltuz, The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Math. Comm. 10(2005), 81-89.
[18] X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 113(1991), 727-731.

2007

Related Posts