The equivalence between the Mann and Ishikawa iterations dealing with generalized contractions

Abstract

We show that the Mann and Ishikawa iterations are equivalently used to approximate fixed points of generalized contractions.

Authors

S.M. Soltuz
Tiberiu Popoviciu Institute of Numerical Analysis

B.E. Rhoades
Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA

Keywords

?

Paper coordinates

B.E. Rhoades, Ş.M. Şoltuz, The equivalence between the Mann and Ishikawa iterations dealing with generalized contractions, Int. J. Math. Math. Sci. 2006 (2006), no. 6, 54653.

PDF

About this paper

Journal

International Journal of Mathematics and Mathematical Sciences

Publisher Name

Wiley

DOI
Print ISSN

0161-1712

Online ISSN

1687-0425

google scholar link

[1] S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American MathematicalSociety 44 (1974), no. 1, 147–150.
[2] W. R. Mann, Mean value methods in iteration, Proceedings of the American Mathematical Soci-ety 4 (1953), no. 3, 506–510.
[3] B. E. Rhoades, Convergence of an Ishikawa-type iteration scheme for a generalized contraction, Journal of Mathematical Analysis and Applications 185 (1994), no. 2, 350–355.
[4] B. E. Rhoades and S¸ . M. Soltuz, On the equivalence of Mann and Ishikawa iteration methods,International Journal of Mathematics and Mathematical Sciences 2003 (2003), no. 7, 451–459.
[5] , _____The equivalence between the convergences of Ishikawa and Mann iterations for an asymp-totically pseudocontractive map, Journal of Mathematical Analysis and Applications 283 (2003),no. 2, 681–688.
[6] ,______ The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators,International Journal of Mathematics and Mathematical Sciences 2003 (2003), no. 42, 2645–2651.
[7] , ______The equivalence between the convergences of Ishikawa and Mann iterations for an asymp-totically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps,Journal of Mathematical Analysis and Applications 289 (2004), no. 1, 266–278.
[8] , ______The equivalence of Mann iteration and Ishikawa iteration for a Lipschitzian ψ-uniformlypseudocontractive and ψ-uniformly accretive maps, Tamkang Journal of Mathematics 35 (2004),no. 3, 235–245.
[9] S. M. Soltuz, The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contract-ive operators, Mathematical Communications 10 (2005), no. 1, 81–88.
[10] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proceedings of the American Mathematical Society 113 (1991), no. 3, 727–731

Paper (preprint) in HTML form

2006-Soltuz-IJMMS-The-equivalence-between-the-Mann-and-Ishikawa-iterations-dealing-with-generalized-

THE EQUIVALENCE BETWEEN THE MANN AND ISHIKAWA ITERATIONS DEALING WITH GENERALIZED CONTRACTIONS

B. E. RHOADES AND ŞTEFAN M. ŞOLTUZ

Received 25 January 2006; Revised 10 May 2006; Accepted 11 May 2006
We show that the Mann and Ishikawa iterations are equivalently used to approximate fixed points of generalized contractions.
Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let X X XXX be a real Banach space, A A AAA a nonempty convex subset of X , T X , T X,TX, TX,T a selfmap of A A AAA, and let x 0 = u 0 A x 0 = u 0 A x_(0)=u_(0)in Ax_{0}=u_{0} \in Ax0=u0A. The Mann iteration (see [2]) is defined by
(1.1) u n + 1 = ( 1 α n ) u n + α n T u n (1.1) u n + 1 = 1 α n u n + α n T u n {:(1.1)u_(n+1)=(1-alpha_(n))u_(n)+alpha_(n)Tu_(n):}\begin{equation*} u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} T u_{n} \tag{1.1} \end{equation*}(1.1)un+1=(1αn)un+αnTun
The Ishikawa iteration is defined (see [1]) by
x n + 1 = ( 1 α n ) x n + α n T y n (1.2) y n = ( 1 β n ) x n + β n T x n x n + 1 = 1 α n x n + α n T y n (1.2) y n = 1 β n x n + β n T x n {:[x_(n+1)=(1-alpha_(n))x_(n)+alpha_(n)Ty_(n)],[(1.2)y_(n)=(1-beta_(n))x_(n)+beta_(n)Tx_(n)]:}\begin{gather*} x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n} \\ y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n} \tag{1.2} \end{gather*}xn+1=(1αn)xn+αnTyn(1.2)yn=(1βn)xn+βnTxn
where { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) α n ( 0 , 1 ) , β n [ 0 , 1 ) {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1)\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1){αn}(0,1),{βn}[0,1).
These methods were applied, in [3], to a class of functions T T TTT satisfying the inequality
(1.3) T x T y Q ( M ( x , y ) ) (1.3) T x T y Q ( M ( x , y ) ) {:(1.3)||Tx-Ty|| <= Q(M(x","y)):}\begin{equation*} \|T x-T y\| \leq Q(M(x, y)) \tag{1.3} \end{equation*}(1.3)TxTyQ(M(x,y))
where Q Q QQQ is a real-valued function satisfying
(a) 0 < Q ( s ) < s 0 < Q ( s ) < s 0 < Q(s) < s0<Q(s)<s0<Q(s)<s for each s > 0 s > 0 s > 0s>0s>0 and Q ( 0 ) = 0 Q ( 0 ) = 0 Q(0)=0Q(0)=0Q(0)=0,
(b) Q Q QQQ is nondecreasing on ( 0 , ) ( 0 , ) (0,oo)(0, \infty)(0,),
(c) g ( s ) := s / ( s Q ( s ) ) g ( s ) := s / ( s Q ( s ) ) g(s):=s//(s-Q(s))g(s):=s /(s-Q(s))g(s):=s/(sQ(s)) is nonincreasing on ( 0 , 0 , 0,oo0, \infty0, ),
(1.4) M ( x , y ) := max { x y , x T x , y T y , x T y , y T x } . (1.4) M ( x , y ) := max { x y , x T x , y T y , x T y , y T x } . {:(1.4)M(x","y):=max{||x-y||","||x-Tx||","||y-Ty||","||x-Ty||","||y-Tx||}.:}\begin{equation*} M(x, y):=\max \{\|x-y\|,\|x-T x\|,\|y-T y\|,\|x-T y\|,\|y-T x\|\} . \tag{1.4} \end{equation*}(1.4)M(x,y):=max{xy,xTx,yTy,xTy,yTx}.
In [4], the following conjecture was given: "if the Mann iteration converges, then so does the Ishikawa iteration." In a series of papers [4-8], the authors have given a positive answer to this conjecture, showing, for example, the equivalence between Mann and
Ishikawa iterations for strongly and uniformly pseudocontractive maps. In this note, we show that the convergence of Mann iteration is equivalent to the convergence of Ishikawa iteration, used to approximate fixed points of a map which satisfies condition (1.3). Such a map is independent of the class of strongly pseudocontractive maps. The class of generalized contractions satisfying (1.3) generalizes the class of quasi-contractions, see, for example, [9]. Thus, our result generalizes the main [9, Theorem 1], which states the equivalence between Mann and Ishikawa iterations when applied to quasi-contractions.
Lemma 1.1 [10]. Let { a n } a n {a_(n)}\left\{a_{n}\right\}{an} be a nonnegative sequence which satisfies the following inequality:
(1.5) a n + 1 ( 1 λ n ) a n + σ n , (1.5) a n + 1 1 λ n a n + σ n , {:(1.5)a_(n+1) <= (1-lambda_(n))a_(n)+sigma_(n)",":}\begin{equation*} a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+\sigma_{n}, \tag{1.5} \end{equation*}(1.5)an+1(1λn)an+σn,
where λ n ( 0 , 1 ) λ n ( 0 , 1 ) lambda_(n)in(0,1)\lambda_{n} \in(0,1)λn(0,1) for all n n 0 , n = 1 λ n = n n 0 , n = 1 λ n = n >= n_(0),sum_(n=1)^(oo)lambda_(n)=oon \geq n_{0}, \sum_{n=1}^{\infty} \lambda_{n}=\inftynn0,n=1λn=, and σ n = o ( λ n ) σ n = o λ n sigma_(n)=o(lambda_(n))\sigma_{n}=o\left(\lambda_{n}\right)σn=o(λn). Then lim n a n = 0 lim n a n = 0 lim_(n rarr oo)a_(n)=0\lim _{n \rightarrow \infty} a_{n}=0limnan=0.
The following result is a lemma from [3, page 351].
Lemma 1.2 [3]. Let A A AAA be a nonempty closed convex subset of a Banach space X X XXX, and T T TTT a self-map of A A AAA satisfying (1.3). Let { α n } α n {alpha_(n)}\left\{\alpha_{n}\right\}{αn} satisfy the conditions α n > 0 α n > 0 alpha_(n) > 0\alpha_{n}>0αn>0 for all n 0 n 0 n >= 0n \geq 0n0 and n = 0 α n = n = 0 α n = sum_(n=0)^(oo)alpha_(n)=oo\sum_{n=0}^{\infty} \alpha_{n}=\inftyn=0αn=. Then the sequences { x n } , { y n } , { u n } , { T x n } , { T y n } x n , y n , u n , T x n , T y n {x_(n)},{y_(n)},{u_(n)},{Tx_(n)},{Ty_(n)}\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\},\left\{T x_{n}\right\},\left\{T y_{n}\right\}{xn},{yn},{un},{Txn},{Tyn}, and { T u n } T u n {Tu_(n)}\left\{T u_{n}\right\}{Tun} are bounded.

2. Main result

Theorem 2.1. Let A A AAA be a nonempty closed convex subset of a Banach space X X XXX, and T T TTT a self-map of A A AAA satisfying (1.3). Let { α n } α n {alpha_(n)}\left\{\alpha_{n}\right\}{αn} satisfy the conditions α n > 0 α n > 0 alpha_(n) > 0\alpha_{n}>0αn>0 for all n 0 n 0 n >= 0n \geq 0n0 and n = 0 α n = n = 0 α n = sum_(n=0)^(oo)alpha_(n)=oo\sum_{n=0}^{\infty} \alpha_{n}=\inftyn=0αn=. Denote by x x x^(**)x^{*}x the unique fixed point of T T TTT. Then for u 0 = x 0 A u 0 = x 0 A u_(0)=x_(0)in Au_{0}=x_{0} \in Au0=x0A, the following are equivalent:
(i) the Mann iteration (1.1) converges to x x x^(**)x^{*}x;
(ii) the Ishikawa iteration (1.2) converges to x x x^(**)x^{*}x.
Proof. Lemma 1.2 assures that both Mann and Ishikawa iterations are bounded and hence, in order to prove the equivalence between (1.1) and (1.2), we need to prove that
(2.1) lim n x n u n = 0 . (2.1) lim n x n u n = 0 . {:(2.1)lim_(n rarr oo)||x_(n)-u_(n)||=0.:}\begin{equation*} \lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 . \tag{2.1} \end{equation*}(2.1)limnxnun=0.
Set
r n = max { sup ( x n T y j : j n ) sup ( u n T u j : j n ) (2.2) sup ( x n T u j : j n ) sup ( u n T y j : j n ) } . r n = max sup x n T y j : j n sup u n T u j : j n (2.2) sup x n T u j : j n sup u n T y j : j n . {:[r_(n)=max{s u p(||x_(n)-Ty_(j)||:j >= n)uu s u p(||u_(n)-Tu_(j)||:j >= n):}],[(2.2){: uu s u p(||x_(n)-Tu_(j)||:j >= n)uu s u p(||u_(n)-Ty_(j)||:j >= n)}.]:}\begin{align*} r_{n}=\max & \left\{\sup \left(\left\|x_{n}-T y_{j}\right\|: j \geq n\right) \cup \sup \left(\left\|u_{n}-T u_{j}\right\|: j \geq n\right)\right. \\ & \left.\cup \sup \left(\left\|x_{n}-T u_{j}\right\|: j \geq n\right) \cup \sup \left(\left\|u_{n}-T y_{j}\right\|: j \geq n\right)\right\} . \tag{2.2} \end{align*}rn=max{sup(xnTyj:jn)sup(unTuj:jn)(2.2)sup(xnTuj:jn)sup(unTyj:jn)}.
Then the following are true:
x n T y j ( 1 α n 1 ) x n 1 T y j + α n 1 T y n 1 T y j ( 1 α n 1 ) r n 1 + α n 1 Q ( M ( y n 1 , y j ) ) ( 1 α n 1 ) r n 1 + α n 1 Q ( r n 1 ) , (2.3) u n T u j ( 1 α n 1 ) u n 1 T u j + α n 1 T u n 1 T u j ( 1 α n 1 ) r n 1 + α n 1 Q ( M ( u n 1 , u j ) ) ( 1 α n 1 ) r n 1 + α n 1 Q ( r n 1 ) , x n T y j 1 α n 1 x n 1 T y j + α n 1 T y n 1 T y j 1 α n 1 r n 1 + α n 1 Q M y n 1 , y j 1 α n 1 r n 1 + α n 1 Q r n 1 , (2.3) u n T u j 1 α n 1 u n 1 T u j + α n 1 T u n 1 T u j 1 α n 1 r n 1 + α n 1 Q M u n 1 , u j 1 α n 1 r n 1 + α n 1 Q r n 1 , {:[||x_(n)-Ty_(j)|| <= (1-alpha_(n-1))||x_(n-1)-Ty_(j)||+alpha_(n-1)||Ty_(n-1)-Ty_(j)||],[ <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(M(y_(n-1),y_(j)))],[ <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(r_(n-1))","],[(2.3)||u_(n)-Tu_(j)|| <= (1-alpha_(n-1))||u_(n-1)-Tu_(j)||+alpha_(n-1)||Tu_(n-1)-Tu_(j)||],[ <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(M(u_(n-1),u_(j)))],[ <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(r_(n-1))","]:}\begin{align*} \left\|x_{n}-T y_{j}\right\| & \leq\left(1-\alpha_{n-1}\right)\left\|x_{n-1}-T y_{j}\right\|+\alpha_{n-1}\left\|T y_{n-1}-T y_{j}\right\| \\ & \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(M\left(y_{n-1}, y_{j}\right)\right) \\ & \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(r_{n-1}\right), \\ \left\|u_{n}-T u_{j}\right\| & \leq\left(1-\alpha_{n-1}\right)\left\|u_{n-1}-T u_{j}\right\|+\alpha_{n-1}\left\|T u_{n-1}-T u_{j}\right\| \tag{2.3}\\ & \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(M\left(u_{n-1}, u_{j}\right)\right) \\ & \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(r_{n-1}\right), \end{align*}xnTyj(1αn1)xn1Tyj+αn1Tyn1Tyj(1αn1)rn1+αn1Q(M(yn1,yj))(1αn1)rn1+αn1Q(rn1),(2.3)unTuj(1αn1)un1Tuj+αn1Tun1Tuj(1αn1)rn1+αn1Q(M(un1,uj))(1αn1)rn1+αn1Q(rn1),
moreover,
x n T u j ( 1 α n 1 ) x n 1 T u j + α n 1 T y n 1 T u j (2.4) ( 1 α n 1 ) r n 1 + α n 1 Q ( M ( y n 1 , u j ) ) ( 1 α n 1 ) r n 1 + α n 1 Q ( r n 1 ) , x n T u j 1 α n 1 x n 1 T u j + α n 1 T y n 1 T u j (2.4) 1 α n 1 r n 1 + α n 1 Q M y n 1 , u j 1 α n 1 r n 1 + α n 1 Q r n 1 , {:[||x_(n)-Tu_(j)|| <= (1-alpha_(n-1))||x_(n-1)-Tu_(j)||+alpha_(n-1)||Ty_(n-1)-Tu_(j)||],[(2.4) <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(M(y_(n-1),u_(j)))],[ <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(r_(n-1))","]:}\begin{align*} \left\|x_{n}-T u_{j}\right\| & \leq\left(1-\alpha_{n-1}\right)\left\|x_{n-1}-T u_{j}\right\|+\alpha_{n-1}\left\|T y_{n-1}-T u_{j}\right\| \\ & \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(M\left(y_{n-1}, u_{j}\right)\right) \tag{2.4}\\ & \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(r_{n-1}\right), \end{align*}xnTuj(1αn1)xn1Tuj+αn1Tyn1Tuj(2.4)(1αn1)rn1+αn1Q(M(yn1,uj))(1αn1)rn1+αn1Q(rn1),
also,
u n T y j ( 1 α n 1 ) u n 1 T y j + α n 1 T u n 1 T y j (2.5) ( 1 α n 1 ) r n 1 + α n 1 Q ( M ( u n 1 , y j ) ) ( 1 α n 1 ) r n 1 + α n 1 Q ( r n 1 ) u n T y j 1 α n 1 u n 1 T y j + α n 1 T u n 1 T y j (2.5) 1 α n 1 r n 1 + α n 1 Q M u n 1 , y j 1 α n 1 r n 1 + α n 1 Q r n 1 {:[||u_(n)-Ty_(j)|| <= (1-alpha_(n-1))||u_(n-1)-Ty_(j)||+alpha_(n-1)||Tu_(n-1)-Ty_(j)||],[(2.5) <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(M(u_(n-1),y_(j)))],[ <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(r_(n-1))]:}\begin{align*} \left\|u_{n}-T y_{j}\right\| & \leq\left(1-\alpha_{n-1}\right)\left\|u_{n-1}-T y_{j}\right\|+\alpha_{n-1}\left\|T u_{n-1}-T y_{j}\right\| \\ & \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(M\left(u_{n-1}, y_{j}\right)\right) \tag{2.5}\\ & \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(r_{n-1}\right) \end{align*}unTyj(1αn1)un1Tyj+αn1Tun1Tyj(2.5)(1αn1)rn1+αn1Q(M(un1,yj))(1αn1)rn1+αn1Q(rn1)
Eventually, one gets the following evaluation:
(2.6) r n ( 1 α n 1 ) r n 1 + α n 1 Q ( r n 1 ) α n 1 g ( r n 1 ) r n 1 r n , (2.6) r n 1 α n 1 r n 1 + α n 1 Q r n 1 α n 1 g r n 1 r n 1 r n , {:(2.6)r_(n) <= (1-alpha_(n-1))r_(n-1)+alpha_(n-1)Q(r_(n-1))Longleftrightarrowalpha_(n-1)g(r_(n-1)) <= r_(n-1)-r_(n)",":}\begin{equation*} r_{n} \leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} Q\left(r_{n-1}\right) \Longleftrightarrow \alpha_{n-1} g\left(r_{n-1}\right) \leq r_{n-1}-r_{n}, \tag{2.6} \end{equation*}(2.6)rn(1αn1)rn1+αn1Q(rn1)αn1g(rn1)rn1rn,
which implies that { r n } r n {r_(n)}\left\{r_{n}\right\}{rn} is nonincreasing in n n nnn and positive. Hence, there exists lim n r n lim n r n lim_(n rarr oo)r_(n)\lim _{n \rightarrow \infty} r_{n}limnrn, denoted by r 0 r 0 r >= 0r \geq 0r0. Suppose r > 0 r > 0 r > 0r>0r>0. From (2.6), we obtain
(2.7) α n 1 g ( r ) α n 1 g ( r n 1 ) r n 1 r n g ( r ) k = 0 n α k k = 0 n ( r k r k 1 ) = r 0 r n + 1 . (2.7) α n 1 g ( r ) α n 1 g r n 1 r n 1 r n g ( r ) k = 0 n α k k = 0 n r k r k 1 = r 0 r n + 1 . {:(2.7)alpha_(n-1)g(r) <= alpha_(n-1)g(r_(n-1)) <= r_(n-1)-r_(n)Longleftrightarrow g(r)sum_(k=0)^(n)alpha_(k) <= sum_(k=0)^(n)(r_(k)-r_(k-1))=r_(0)-r_(n+1).:}\begin{equation*} \alpha_{n-1} g(r) \leq \alpha_{n-1} g\left(r_{n-1}\right) \leq r_{n-1}-r_{n} \Longleftrightarrow g(r) \sum_{k=0}^{n} \alpha_{k} \leq \sum_{k=0}^{n}\left(r_{k}-r_{k-1}\right)=r_{0}-r_{n+1} . \tag{2.7} \end{equation*}(2.7)αn1g(r)αn1g(rn1)rn1rng(r)k=0nαkk=0n(rkrk1)=r0rn+1.
The right-hand side is bounded and the left-hand side is unbounded. Thus, r = 0 r = 0 r=0r=0r=0. Hence,
(2.8) lim n x n T u n = 0 , lim n u n T y n = 0 lim n x n T y n = 0 , lim n u n T u n = 0 (2.8) lim n x n T u n = 0 , lim n u n T y n = 0 lim n x n T y n = 0 , lim n u n T u n = 0 {:(2.8){:[lim_(n rarr oo)||x_(n)-Tu_(n)||=0",",lim_(n rarr oo)||u_(n)-Ty_(n)||=0],[lim_(n rarr oo)||x_(n)-Ty_(n)||=0",",lim_(n rarr oo)||u_(n)-Tu_(n)||=0]:}:}\begin{array}{ll} \lim _{n \rightarrow \infty}\left\|x_{n}-T u_{n}\right\|=0, & \lim _{n \rightarrow \infty}\left\|u_{n}-T y_{n}\right\|=0 \\ \lim _{n \rightarrow \infty}\left\|x_{n}-T y_{n}\right\|=0, & \lim _{n \rightarrow \infty}\left\|u_{n}-T u_{n}\right\|=0 \tag{2.8} \end{array}(2.8)limnxnTun=0,limnunTyn=0limnxnTyn=0,limnunTun=0
Suppose now that the Mann iteration converges, then one has
x n + 1 u n + 1 ( 1 α n ) x n u n + α n T y n T u n (2.9) ( 1 α n ) x n u n + α n ( T y n x n + x n T u n ) . x n + 1 u n + 1 1 α n x n u n + α n T y n T u n (2.9) 1 α n x n u n + α n T y n x n + x n T u n . {:[||x_(n+1)-u_(n+1)|| <= (1-alpha_(n))||x_(n)-u_(n)||+alpha_(n)||Ty_(n)-Tu_(n)||],[(2.9) <= (1-alpha_(n))||x_(n)-u_(n)||+alpha_(n)(||Ty_(n)-x_(n)||+||x_(n)-Tu_(n)||).]:}\begin{align*} \left\|x_{n+1}-u_{n+1}\right\| & \leq\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\left\|T y_{n}-T u_{n}\right\| \\ & \leq\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\left(\left\|T y_{n}-x_{n}\right\|+\left\|x_{n}-T u_{n}\right\|\right) . \tag{2.9} \end{align*}xn+1un+1(1αn)xnun+αnTynTun(2.9)(1αn)xnun+αn(Tynxn+xnTun).
Using (2.8) and (2.9) and Lemma 1.1, with
λ n := x n u n , (2.10) σ n := α n ( T y n x n + x n T u n ) , σ n = o ( α n ) , λ n := x n u n , (2.10) σ n := α n T y n x n + x n T u n , σ n = o α n , {:[lambda_(n):=||x_(n)-u_(n)||","],[(2.10)sigma_(n):=alpha_(n)(||Ty_(n)-x_(n)||+||x_(n)-Tu_(n)||)","],[sigma_(n)=o(alpha_(n))","]:}\begin{gather*} \lambda_{n}:=\left\|x_{n}-u_{n}\right\|, \\ \sigma_{n}:=\alpha_{n}\left(\left\|T y_{n}-x_{n}\right\|+\left\|x_{n}-T u_{n}\right\|\right), \tag{2.10}\\ \sigma_{n}=o\left(\alpha_{n}\right), \end{gather*}λn:=xnun,(2.10)σn:=αn(Tynxn+xnTun),σn=o(αn),

4 Equivalent iterations for generalized contractions

we have lim n λ n = 0 lim n λ n = 0 lim_(n rarr oo)lambda_(n)=0\lim _{n \rightarrow \infty} \lambda_{n}=0limnλn=0, that is, (2.1) holds. The relation
(2.11) x n x x n u n + x u n 0 (2.11) x n x x n u n + x u n 0 {:(2.11)||x_(n)-x^(**)|| <= ||x_(n)-u_(n)||+||x^(**)-u_(n)||rarr0:}\begin{equation*} \left\|x_{n}-x^{*}\right\| \leq\left\|x_{n}-u_{n}\right\|+\left\|x^{*}-u_{n}\right\| \rightarrow 0 \tag{2.11} \end{equation*}(2.11)xnxxnun+xun0
leads to the conclusion that Ishikawa iteration converges too. Suppose now that the Ishikawa iteration converges, then one has
x n + 1 u n + 1 ( 1 α n ) x n u n + α n T y n T u n (2.12) ( 1 α n ) x n u n + α n ( T y n u n + u n T u n ) x n + 1 u n + 1 1 α n x n u n + α n T y n T u n (2.12) 1 α n x n u n + α n T y n u n + u n T u n {:[||x_(n+1)-u_(n+1)|| <= (1-alpha_(n))||x_(n)-u_(n)||+alpha_(n)||Ty_(n)-Tu_(n)||],[(2.12) <= (1-alpha_(n))||x_(n)-u_(n)||+alpha_(n)(||Ty_(n)-u_(n)||+||u_(n)-Tu_(n)||)]:}\begin{align*} \left\|x_{n+1}-u_{n+1}\right\| & \leq\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\left\|T y_{n}-T u_{n}\right\| \\ & \leq\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\left(\left\|T y_{n}-u_{n}\right\|+\left\|u_{n}-T u_{n}\right\|\right) \tag{2.12} \end{align*}xn+1un+1(1αn)xnun+αnTynTun(2.12)(1αn)xnun+αn(Tynun+unTun)
Using (2.8) and (2.12) and Lemma 1.1, with
λ n := x n u n (2.13) σ n := α n ( T y n u n + u n T u n ) σ n = o ( α n ) λ n := x n u n (2.13) σ n := α n T y n u n + u n T u n σ n = o α n {:[lambda_(n):=||x_(n)-u_(n)||],[(2.13)sigma_(n):=alpha_(n)(||Ty_(n)-u_(n)||+||u_(n)-Tu_(n)||)],[sigma_(n)=o(alpha_(n))]:}\begin{gather*} \lambda_{n}:=\left\|x_{n}-u_{n}\right\| \\ \sigma_{n}:=\alpha_{n}\left(\left\|T y_{n}-u_{n}\right\|+\left\|u_{n}-T u_{n}\right\|\right) \tag{2.13}\\ \sigma_{n}=o\left(\alpha_{n}\right) \end{gather*}λn:=xnun(2.13)σn:=αn(Tynun+unTun)σn=o(αn)
we have lim n λ n = 0 lim n λ n = 0 lim_(n rarr oo)lambda_(n)=0\lim _{n \rightarrow \infty} \lambda_{n}=0limnλn=0, that is, (2.1) holds. The relation
(2.14) u n x x n u n + x n x 0 (2.14) u n x x n u n + x n x 0 {:(2.14)||u_(n)-x^(**)|| <= ||x_(n)-u_(n)||+||x_(n)-x^(**)||rarr0:}\begin{equation*} \left\|u_{n}-x^{*}\right\| \leq\left\|x_{n}-u_{n}\right\|+\left\|x_{n}-x^{*}\right\| \rightarrow 0 \tag{2.14} \end{equation*}(2.14)unxxnun+xnx0
leads to the conclusion that Mann iteration converges too.

Acknowledgment

The authors are indebted to the referees for carefully reading this note and for making useful suggestions.

References

[1] S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American Mathematical Society 44 (1974), no. 1, 147-150.
[2] W. R. Mann, Mean value methods in iteration, Proceedings of the American Mathematical Society 4 (1953), no. 3, 506-510.
[3] B. E. Rhoades, Convergence of an Ishikawa-type iteration scheme for a generalized contraction, Journal of Mathematical Analysis and Applications 185 (1994), no. 2, 350-355.
[4] B. E. Rhoades and Ş. M. Şoltuz, On the equivalence of Mann and Ishikawa iteration methods, International Journal of Mathematics and Mathematical Sciences 2003 (2003), no. 7, 451-459.
[5] - , The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically pseudocontractive map, Journal of Mathematical Analysis and Applications 283 (2003), no. 2, 681-688.
[6] _, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators, International Journal of Mathematics and Mathematical Sciences 2003 (2003), no. 42, 26452651.
[7] - , The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, Journal of Mathematical Analysis and Applications 289 (2004), no. 1, 266-278.
[8] _, The equivalence of Mann iteration and Ishikawa iteration for a Lipschitzian Ψ Ψ Psi\PsiΨ-uniformly pseudocontractive and ψ ψ psi\psiψ-uniformly accretive maps, Tamkang Journal of Mathematics 35 (2004), no. 3, 235-245.
[9] Ş. M. Şoltuz, The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Mathematical Communications 10 (2005), no. 1, 81-88.
[10] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proceedings of the American Mathematical Society 113 (1991), no. 3, 727-731.
B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
E-mail address: rhoades@indiana.edu
Ştefan M. Şoltuz: "Tiberiu Popoviciu" Institute of Numerical Analysis, Romanian Academy, Tiberiu Popoviciu, P.O. Box 68-1, 400110 Cluj-Napoca, Romania
E-mail addresses: smsoltuz@gmail.com; soltuzul@yahoo.com
2006

Related Posts