The extension of starshaped bounded Lipschitz functions

Abstract

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

Paper coordinates

C. Mustăţa, The extension of starshaped bounded Lipschitz functions, Anal. Numer. Théor. Approx. 9 (1980) 1, 93-99

PDF

About this paper

Journal

Revue d’Analyse Numer. Theor.Approximation

Publisher Name

Publishing Romanian Academy

Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

[1] Cobzas, S., Mustata, C., Norm Preserving Extension of Convex Lipschitz Functions, J. Approx. Theory 24 (1978), 555-564.
[2] Holmes, R.B., A Course on Optimization and Best Approximation, Lectures Notes in Math. No. 257, Springer Verlag, Berlin-Heidelberg-New York, 1972.
[3] Johnson, J.A., Banach Spaces of Lipschitz Functions and Vector-Valued Lipschitz Functions, Trans. Amer. Math. Soc. 148 (1970), 147-169.
[4] McShane, R.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
[5] Musata, C., Best Approximation and Unique Extension of Lipschitz Functions, H. Approx. Theory 19 (1977), 222-230.
[6] Mustata, C., A Characterization of Chebyshevian Subspace of Y^{}-Type, Mathematica – Revue Anal. Num. Teor. Approx., L’Analyse Num. Teor. approx. 6, 1 (1977), 51-56.
[7] Mustata, C., Norm Preserving Extension of Starshaped Lipschitz Functions, Mathematica 19 (42) 2 (1977), 183-187.
[8] Phelps, R.R., Uniqueness of Hahn-Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.

1980

Related Posts