The extension of starshaped bounded Lipschitz functions

Abstract

Authors

Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania

Keywords

?

Paper coordinates

C. Mustăţa, The extension of starshaped bounded Lipschitz functions, Anal. Numer. Théor. Approx. 9 (1980) 1, 93-99

PDF

About this paper

Journal

Revue d’Analyse Numer. Theor.Approximation

Publisher Name

Publishing Romanian Academy

Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

[1] Cobzas, S., Mustata, C., Norm Preserving Extension of Convex Lipschitz Functions, J. Approx. Theory 24 (1978), 555-564.
[2] Holmes, R.B., A Course on Optimization and Best Approximation, Lectures Notes in Math. No. 257, Springer Verlag, Berlin-Heidelberg-New York, 1972.
[3] Johnson, J.A., Banach Spaces of Lipschitz Functions and Vector-Valued Lipschitz Functions, Trans. Amer. Math. Soc. 148 (1970), 147-169.
[4] McShane, R.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
[5] Musata, C., Best Approximation and Unique Extension of Lipschitz Functions, H. Approx. Theory 19 (1977), 222-230.
[6] Mustata, C., A Characterization of Chebyshevian Subspace of Y^{}-Type, Mathematica – Revue Anal. Num. Teor. Approx., L’Analyse Num. Teor. approx. 6, 1 (1977), 51-56.
[7] Mustata, C., Norm Preserving Extension of Starshaped Lipschitz Functions, Mathematica 19 (42) 2 (1977), 183-187.
[8] Phelps, R.R., Uniqueness of Hahn-Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.

Related Posts