The extension of starshaped bounded Lipschitz functions



Costica Mustata
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania



Paper coordinates

C. Mustăţa, The extension of starshaped bounded Lipschitz functions, Anal. Numer. Théor. Approx. 9 (1980) 1, 93-99


About this paper


Revue d’Analyse Numer. Theor.Approximation

Publisher Name

Publishing Romanian Academy

Print ISSN


Online ISSN


google scholar link

[1] Cobzas, S., Mustata, C., Norm Preserving Extension of Convex Lipschitz Functions, J. Approx. Theory 24 (1978), 555-564.
[2] Holmes, R.B., A Course on Optimization and Best Approximation, Lectures Notes in Math. No. 257, Springer Verlag, Berlin-Heidelberg-New York, 1972.
[3] Johnson, J.A., Banach Spaces of Lipschitz Functions and Vector-Valued Lipschitz Functions, Trans. Amer. Math. Soc. 148 (1970), 147-169.
[4] McShane, R.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
[5] Musata, C., Best Approximation and Unique Extension of Lipschitz Functions, H. Approx. Theory 19 (1977), 222-230.
[6] Mustata, C., A Characterization of Chebyshevian Subspace of Y^{}-Type, Mathematica – Revue Anal. Num. Teor. Approx., L’Analyse Num. Teor. approx. 6, 1 (1977), 51-56.
[7] Mustata, C., Norm Preserving Extension of Starshaped Lipschitz Functions, Mathematica 19 (42) 2 (1977), 183-187.
[8] Phelps, R.R., Uniqueness of Hahn-Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.


Related Posts