The first Seiffert mean is strictly (G,A)-super-stabilizable

Abstract

The concept of strictly super-stabilizability for bivariate means has been defined recently by Ra\”{\i}soulli and S\'{a}ndor (J. Inequal. Appl. 2014:28,2014). We answer into affirmative to an open question posed in that paper, namely: Prove or disprove that the first Seiffert mean P~is strictly~ \[(G,A)\] -super-stabilizable. We use series expansions of the functions involved and reduce the main inequality to three auxiliary ones. The computations are performed with the aid of the computer algebra systems~Maple~and~Maxima. The method is general and can be adapted to other problems related to sub- or super-stabilizability.

Authors

Mira C Anisiu
T. Popoviciu Institute of Numerical Analysis, Romanian Academy, Fantanele 53, Cluj-Napoca, România

Valeriu Anisiu
Faculty of Mathematics and Computer Science, Babeş-Bolyai University,  Cluj-Napoca,  Romania

Keywords

PDF

Cite this paper as:

M.-C. Anisiu, V. Anisiu, The first Seiffert mean is strictly (G,A)-super-stabilizable, J. Ineq. Appl., 2014, 2014:185

About this paper

Journal

Journal of Inequalities and Applications

Publisher Name

Springer

Print ISSN

10255834

1029242X

References

[1] Raïssouli M, Sándor J: On a method of construction of new means with applications. J. Inequal. Appl. 2013., 2013: Article ID 89 Google Scholar
[2] Bullen P: Handbook of Means and Their Inequalities. Kluwer Academic, Dordrecht; 2003.Book MATH Google Scholar
[3] Anisiu M-C, Anisiu V: Logarithmic mean and weighted sum of geometric and anti-harmonic means. Rev. Anal. Numér. Théor. Approx. 2012,41(2):95–98.MathSciNet MATH Google Scholar
[4] Raïssouli M: Stability and stabilizability for means. Appl. Math. E-Notes 2011, 11: 159–174.MathSciNet MATH Google Scholar
[5] Raïssouli M, Sándor J: Sub-stabilizability and super-stabilizability for bivariate means. J. Inequal. Appl. 2014., 2014: Article ID 28 Google Scholar
[6] Chu Y-M, Wang M-K, Wang Z-K: An optimal double inequality between Seiffert and geometric means. J. Appl. Math. 2011., 2011: Article ID 26123 Google Scholar
[7] Chu Y-M, Wang M-K, Wang Z-K: A best-possible inequality between Seiffert and harmonic means. J. Inequal. Appl. 2011., 2011: Article ID 94 Google Scholar
[8] Gong W-M, Song Y-Q, Wang M-K, Chu Y-M: A sharp double inequality between Seiffert, arithmetic, and geometric means. Abstr. Appl. Anal. 2012., 2012: Article ID 684384 Google Scholar
[9] Song Y-Q, Qian W-M, Jiang Y-L, Chu Y-M: Optimal lower generalized logarithmic mean bound for the Seiffert mean. J. Appl. Math. 2013., 2013: Article ID 273653 Google Scholar
[10]  He Z-Y, Qian W-M, Jiang Y-L, Song Y-Q, Chu Y-M: Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of contraharmonic mean. Abstr. Appl. Anal. 2013., 2013: Article ID 903982 Google Scholar
[11]  Gradshteyn I, Ryzhik I: Table of Integrals, Series and Products. Academic Press, Amsterdam; 2007.

2014

Related Posts