Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural Mechanics and Beyond

Book summary

Summary of the book…

Book title

Spectral Methods for Non-Standard Eigenvalue Problems

Book subtitle

Fluid and Structural Mechanics and Beyond

Book cover

Keywords

keyword1,

1 General Formulation of Spectral Approximation
1.1 The Tau and Galerkin Spectral Methods
1.2 Theoretical Foundation of Spectral Collocation

2 Tau and Galerkin Methods for Fourth Order GEPs
2.1 The ChT Method
2.2 The ChG Method
2.3 ChT Methods for GEPs with k Dependent Boundary Conditions
2.3.1 Second Order S-L Problems with Parameter Dependent Boundary Conditions
2.3.2 The Stability of some Elastic Systems
2.3.3 A Modified ChT Method for a Particular O-S Problem

3 The Chebyshev Collocation Method
3.1 ChC Method Versus ChG and ChT Methods in Solving Fourth Order GEPs
3.2 The Viola’s Eigenvalue Problem
3.3 Linear Hydrodynamic Stability of Thermal Convection with Variable Gravity Field
3.4 Linear Hydrodynamic Stability of EHD Convection Between Two Parallel Walls
3.5 Multiparameter Mathieu’s Problem
3.6 Improvements Induced by JD Methods

4 The Laguerre Collocation Method
4.1 LC Solutions to a Third Order Linear Boundary Value Problem on the Half-Line
4.2 The Falkner-Skan Problem
4.3 The Laguerre Differentiation Matrices
4.4 The LC algorithm
4.5 Numerical Solutions to Falkner-Skan Problem
4.6 Second Order Nonlinear Singular Boundary Value Problems on the Half-Line
4.7 Second Order Eigenvalue Problems on Half-Line
4.8 Fourth Order Eigenvalue Problems on Half-Lin
4.9 The Movement of a Pile

5 Conclusions and Further Developments
5.1 Lessons Learned Along the Way
5.2 Further Developments

Chapter

Ch. 1 General Formulation of Spectral Approximation

https://doi.org/10.1007/978-3-319-06230-3_1

The chapter contains first the general formulation of the spectral approximation as a weighted residual method, i.e., the projection and interpolation operators, test and trial (shape) functions etc. Then, the functional framework of the tau and Galerkin methods based on Chebyshev polynomials is provided, mainly discussing the projection operators. The Chebyshev collocation is introduced in some details. The Chebyshev-Gauss quadrature formulas are reviewed, and the interpolation operator along with the collocation (otherwise called pseudospectral) differentiation matrices are considered. On a regular second order S-L problem, some remarks on the behavior of solutions of Chebyshev collocation, Chebyshev tau and of a Galerkin type method with respect to their order of convergence are conducted.

[1] Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) zbMATH, Google Scholar
[2] Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, Berlin (2009) Google Scholar
[3] Babuska, I., Aziz, K.: Survey lectures on the mathematical foundation of the finite element method. In: Aziz, A.K. (ed.) The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, pp. 3–359. Academic Press, London (1972) Google Scholar
[4] Boyce, W.E., Di Prima, R.C.: Elementary Differential Equations and Boundary Value Problems, 9th edn. Wiley, India (2009) Google Scholar
[5] Breuer, K.S., Everson, R.M.: On the errors incurred calculating derivatives using Chebyshev polynomials. J. Comput. Phys. 99, 56–67 (1992) CrossRef, zbMATH, MathSciNet, Google Scholar
[6] Butzer, P., Jongmans, F.: P. L. Chebyshev (1821–1894) a guide to his life and work. J. Approx. Theory 96, 111–138 (1999) CrossRef, zbMATH, MathSciNet, Google Scholar
[7] Canuto, C.: Boundary conditions in Chebyshev and Legendre methods. SIAM J. Numer. Anal. 23, 815–831 (1986) CrossRef, zbMATH, MathSciNet, Google Scholar
[8] Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comp. 38, 67–86 (1982) CrossRef, zbMATH, MathSciNe, tGoogle Scholar
[9] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1987) Google Scholar
[10] Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965) CrossRef, zbMATH, MathSciNet, Google Scholar
[11] Don, W.S., Gottlieb, D.: The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31, 1519–1534 (1994) CrossRef, zbMATH, MathSciNet, Google Scholar
[12] Don, W.S., Solomonoff, A.: Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique. SIAM J. Sci. Comput. 18, 1040–1055 (1997) CrossRef, zbMATH, MathSciNet, Google Scholar
[13] Elbarbary, E.M.E., El-Sayed, S.M.: Higher order pseudospectral differentiation matrices. Appl. Numer. Math. 55, 425–438 (2005) CrossRef, zbMATH, MathSciNet, Google Scholar
[14] Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford Mathematical Handbooks. O U P, Oxford (1968) Google Scholar
[15] Fornberg, B.: A Practical Guide to Pseudospectral Mathods. Cambridge University Press, Cambridge (1998) Google Scholar
[16] Funaro, D.: A preconditioning matrix for the Chebyshev differencing operator. SIAM J. Numer. Anal. 24, 1024–1031 (1987) CrossRef, zbMATH, MathSciNet, Google Scholar
[17] Gardner, D.R., Trogdon, S.A., Douglass, R.D.: A modified tau spectral method that eliminates spurious eigenvalues. J. Comput. Phys. 80, 137–167 (1989) CrossRef, zbMATH, Google Scholar
[18] Gheorghiu, C.I.: A Constructive Introduction to Finite Elements Method. Quo Vadis, Cluj-Napoca (1999) Google Scholar
[19] Gheorghiu, C.I.: Spectral Methods for Differential Problems. Casa Cartii de Stiinta Publishing House, Cluj-Napoca (2007) zbMATH, Google Scholar
[20] Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. In: SIAM, Philadelphia, Pennsilvania 19103 (1977) Google Scholar
[21] Heinrichs, W.: Spectral methods with sparse matrices. Numer. Math. 56, 25–41 (1989) CrossRef, zbMATH, MathSciNet, Google Scholar
[22] Heinrichs, W.: Spectral approximation of third-order problems. J. Scientific Comput. 14, 275–289 (1999) CrossRef, zbMATH, MathSciNet, Google Scholar
[23] Hoepffner, J.: Implementation of boundary conditions. http://www.lmm.jussieu.fr/~hoepffner/boundarycondition.pdf (2010). Accessed 25 Aug 2012
[24] Huang, W., Sloan, D.M.: The pseudospectral method for third-order differential equations. SIAM J. Numer. Anal. 29, 1626–1647 (1992) CrossRef, zbMATH, MathSciNet, Google Scholar
[25] Huang, W., Sloan, D.M.: The pseudospectral method for solving differential eigenvalue problems. J. Comput. Phys. 111, 399–409 (1994) CrossRef, zbMATH, MathSciNet, Google Scholar
[26] Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rititskii, YaB, Stetsenko, VYa.: Approximate Solution of Operator Equations. Wolters- Noordhoff, Groningen (1972) CrossRef, Google Scholar
[27] Maday, Y.: Analysis of spectral projectors in one-dimensional domains. Math. Comp. 55, 537–562 (1990) CrossRef, zbMATH, MathSciNet, Google Scholar
[28] Marletta, M., Shkalikov, A., Tretter, Ch.: Pencils of differential operators containing the eigenvalue parameter in the boundary conditions. Proy. R. Soc. Edinb. 133A, 893–917 (2003) CrossRef, MathSciNet, Google Scholar
[29] Monro, D.M.: Interpolation by fast Fourier and Chebyshev transforms. Int. J. Num. Met. Eng. 14, 1679–1692 (1979) CrossRef, zbMATH, MathSciNet, Google Scholar
[30] Murty, V.N.: Best approximation with Chebyshev polynomials. SIAM J. Numer. Anal. 8, 717–721 (1971) CrossRef, MathSciNet, Google Scholar
[31] Orszag, S.: Accurate solutions of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689–703 (1971) CrossRef zbMATH, Google Scholar
[32] Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994) zbMATH, Google Scholar
[33] Quarteroni, A., Saleri, F.: Scientific Computing with MATLAB and Octave, 2nd edn. Springer, Berlin (2006) Google Scholar
[34] Shen, J.: Efficient spectral-galerkin method II. Direct solvers of second and fourth order equations by using Chebyshev polynomials. SIAM J. Sci. Comput. 16, 74–87 (1995) CrossRef, zbMATH, MathSciNet, Google Scholar
[35] Solomonoff, A.: A fast algorithm for spectral differentiation. J. Comput. Phys. 98, 174–177 (1992) CrossRef zbMATH, MathSciNet, Google Scholar
[36] Szegö, G.: Orthogonal Polynomials. American Mathematical Society, New York (1959) zbMATH, Google Scholar
[37] Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23, 1–10 (1986) CrossRef, zbMATH, MathSciNet, Google Scholar
[38] Trefethen, L.N.: Spectral Methods in MATLAB. In: SIAM, Philadelphia, PA (2000) Google Scholar
[39] Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Software 26, 465–519 (2000) CrossRef, MathSciNet, Google Scholar
[40] Welfert, B.D.: Generation of pseudospectral differentiation matrices. SIAM J. Numer. Anal. 34, 1640–1657 (1997) CrossRef, zbMATH, MathSciNet, Google Scholar

Chapter

Ch. 2 Tau and Galerkin Methods for Fourth Order GEPs
https://doi.org/10.1007/978-3-319-06230-3_2

Tau method is detailed mainly for fourth order eigenproblems. For such problems tau differentiation matrices up to fourth order are provided. As some of these problems are self-adjoint a weak (variational) along with a minimization formulation are suggested. The Galerkin method is analyzed with respect to the possibility to choice test and trial functions in order to improve the properties of the differentiation (discretization) matrices, i.e., conditioning, sparsity and symmetry. The non-normality of the differentiation (discretization) matrices is quantified using a scalar measure, i.e., the Henrici’s number and the pseudospectrum. The chapter also contains useful hints about the efficient implementation of both methods. A particular attention is paid to the capabilities of tau method to handle GEPs supplied with parameter dependent boundary conditions. The linear stability of some elastic systems as well as the linear hydrodynamic stability of some parallel shear flows (the so called Marangoni-Plateau-Gibbs effect) are analyzed in this context.

[1] Bjoerstad, P.E., Tjoestheim, B.P.: Efficient algorithms for solving a fourth-equation with the spectral-Galerkin method. SIAM J. Sci. Stat. Comput. 18, 621–632 (1997) CrossRef, zbMATH, Google Scholar
[2] Blyth, M.G., Pozrikidis, C.: Effect of surfactant on the stability of film flow down an inclined plane. J. Fluid Mech. 521, 241–250 (2004) CrossRef, zbMATH, MathSciNet, Google Scholar
[3] Boyce, W.E., Di Prima, R.C.: Elementary Differential Equations and Boundary Value Problems, 9th edn. Wiley, India (2009) Google Scholar
[4] Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. DOVER Publications, Inc., New York (2000) Google Scholar
[5] Cabos, Ch.: A preconditioning of the tau operator for ordinary differential equations. ZAMM 74, 521–532 (1994) CrossRef, zbMATH, MathSciNet, Google Scholar
[6] Camporeale, C., Ridolfi, L.: Ice ripple formation at large Reynolds numbers. J. Fluid Mech. 694, 225–251 (2012)CrossRefzbMATHGoogle Scholar
[7] Camporeale, C., Canuto, C., Ridolfi, L.: A spectral approach for the stability analysis of turbulent open channel flows over granular beds. Theor. Comput. Fluid Dyn. 26, 51–80 (2012) CrossRef, Google Scholar
[8] Camporeale, C., Mantelli, E., Manes, C.: Interplay among unstable modes in films over permeable wals. J. Fluid Mech. 719, 527–550 (2013) CrossRef, zbMATH, MathSciNet, Google Scholar
[9] Canuto, C.: Spectral Methods and a Maximum Principle. Math. Comput. 51, 615–629 (1988) CrossRef, zbMATH, MathSciNet, Google Scholar
[10] Chaitin-Chatelin, F., Frayssé, V.: Lectures on Finite Precision Computation. SIAM, Philadelphia (1996) CrossRef, Google Scholar
[11] Chanane, B.: Computation of the eigenvalues of Sturm-Liouville problems with parameter ependent boundary conditions using the regularized sampling method. Math. Comput. 74, 1793–1801 (2005) CrossRef, zbMATH, MathSciNet, Google Scholar
[12] Doha, E.H.: On the coefficients of differential expansions and derivatives of Jacobi polynomials. J. Phys. A: Math. Gen. 35, 3467–3478 (2002) CrossRef, zbMATH, MathSciNet, Google Scholar
[13] Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58, 1224–1244 (2008) CrossRef, zbMATH, MathSciNet, Google Scholar
[14] Dongarra, J.J., Straughan, B., Walker, D.W.: Chebyshev tau- QZ algorithm for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–434 (1996) CrossRef, zbMATH, MathSciNet, Google Scholar
[15] van Dorsslaer, J.L.M.: Pseudospectra for matrix pencils and stability of equilibria. BIT Numer. Math. 37, 833–845 (1997) CrossRef, Google Scholar
[16] van Dorsslaer, J.L.M.: Several concepts to investigate strongly nonnormal eigenvalue problems. SIAM J. Sci. Comput. 24, 1031–1053 (2003) CrossRef, Google Scholar
[17] Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981) zbMATH, Google Scholar
[18] Drazin, P.G., Beaumont, D.N., Coaker, S.A.: On Rossby waves modified by basic shear, and barotropic instability. J. Fluid Mech. 124, 439–456 (1982) CrossRef, zbMATH, MathSciNet, Google Scholar
[19] Eberlein, P.J.: On measures of non-normality for matrices. Amer. Math. Monthly 72, 995–996 (1965) CrossRef, zbMATH, MathSciNet, Google Scholar
[20] El-Daou, M.K., Ortiz, E.L., Samara, H.: A unified approach to the tau method and Chebyshev series expansion techniques. Comput. Math. Appl. 25, 73–82 (1993) CrossRef, zbMATH, MathSciNet, Google Scholar
[21] Elsner, L., Paardekooper, M.H.C.: On measure of nonnormality of matrices. Linear Algebra Appl. 92, 107–124 (1987) CrossRef, zbMATH, MathSciNet, Google Scholar
[22] Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford Mathematical Handbooks. Oxford University Press, Oxford (1968) Google Scholar
[23] Funaro, D.: Polynomial Approximation of Differential Equations. Springer, Berlin Heidelberg (1992) zbMATH, Google Scholar
[24] Gardner, D.R., Trogdon, S.A., Douglass, R.D.: A modified tau spectral method that eliminates spurious eigenvalues. J. Comput. Phys. 80, 137–167 (1989) CrossRef, zbMATH, Google Scholar
[25] Gheorghiu, C.I.: Spectral Methods for Differential Problems. Casa Cartii de Stiinta Publishing House, Cluj-Napoca (2007) zbMATH, Google Scholar
[26] Gheorghiu, C.I., Pop, S.I.: On the Chebyshev-tau approximation for some singularly perturbed two-point boundary value problems. Rev. Roum. Anal. Numer. Theor. Approx. 24, 117–124 (1995) zbMATH, MathSciNet, Google Scholar
[27] Gheorghiu, C.I., Pop, S.I.: A Modified Chebyshev-tau method for a hydrodynamic stability problem. In: Proceedings of ICAOR, Cluj-Napoca, vol. II, pp. 119–126 (1997) Google Scholar
[28] Golub, G.H., van der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123, 35–65 (2000) CrossRef, zbMATH, MathSciNet, Google Scholar
[29] Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, p. 19103. SIAM, Philadelphia, Pennsilvania (1977) Google Scholar
[30] Gottlieb, D., Hussaini, M.Y., Orszag, S.A.: Theory and applications of spectral methods. In: Voigt, R.G., Gottlieb, D., Hussaini, M.Y. (eds.) Spectral Methods for Partial Differential Equations, pp. 1–54. SIAM-CBMS (1984).Google Scholar
[31] Greenberg, L., Marletta, M.: Numerical methods for higher order Sturm-Liouville problems. J. Comput. Appl. Math. 125, 367–383 (2000) CrossRef, zbMATH, MathSciNet, Google Scholar
[32] Greenberg, L., Marletta, M.: Numerical solution of non-self-adjoint Sturm-Liouville problems and related systems. SIAM J. Numer. Anal. 38, 1800–1845 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
[33] Hagan, J., Priede, J.: Capacitance matrix technique for avoiding spurious eigenmodes in the solution of hydrdynamic stability problems by Chebyshev collocation method. arXiv:1207.0388v2[physics.com-php]. Accessed 14 Dec 2012[34] Heinrichs, W.: A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12, 1162–1172 (1991) CrossRe, fzbMATH, MathSciNet, Google Scholar
[35] Henrici, P.: Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices. Numer. Math. 4, 24–40 (1962) CrossRef, zbMATH, MathSciNet, Google Scholar
[36] Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York, London (1962) zbMATH, Google Scholar
[37] Kirkner, N.P.: Computational aspects of the spectral Galerkin FEM for the Orr-Sommerfeld equation. Int. J. Numer. Meth. Fluids 32, 119–137 (2000) Google Scholar
[38] Lanczos, C.: Applied Analysis. Prentice Hall Inc., Englewood Cliffs (1956) Google Scholar
[39] Landau, L., Lifchitz, E.: Théorie de L’Élasticité. Édition Mir, Moscou (1967) zbMATH, Google Scholar
[40] Lee, S.L.: A practical upper bound for departure from normality. SIAM J. Matrix Anal. Appl. 16, 462–468 (1995) CrossRef, zbMATH, MathSciNetGoogle Scholar
[41] Lindsay, K.A., Odgen, R.R.: A practical implementation of spectral methods resistant to the generation of spurious eigenvalues. Intl. J. Numer. Fluids 15, 1277–1294 (1992) CrossRef, zbMATH, Google Scholar
[42] Marletta, M., Shkalikov, A., Tretter, Ch.: Pencils of differential operators containing the eigenvalue parameter in the boundary conditions. Proc. R. Soc. Edinb. 133A, 893–917 (2003) NULL Google Scholar
[43] McFaden, G.B., Murray, B.T., Boisvert, R.F.: Elimination of spurious eigenvalues in the Chebyshev tau spectral methods. J. Comput. Phys. 91, 228–239 (1990) CrossRef, MathSciNet, Google Scholar
[44] Melenk, J.M., Kirchner, N.P., Schwab, C.: Spectral Galerkin discretization for hydrodynamic stability problems. Computing 65, 97–118 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
[45] Orszag, S.: Accurate solutions of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689–703 (1971) CrossRef, zbMATH, Google Scholar
[46] Ortiz, E.L.: The tau method. SIAM J. Numer. Anal. 6, 480–492 (1969) CrossRef, zbMATH, MathSciNet, Google Scholar
[47] Ortiz, E.L., Samara, H.: An operational approach to the tau method for the numerical solution of non-linear differential equations. Computing 27, 15–25 (1981) CrossRef, zbMATH, MathSciNet, Google Scholar
[48] Pop, I.S.: A stabilized approach for the Chebyshev-tau method. Stud. Univ. Babes-Bolyai, Math. 42, 67–79 (1997) Google Scholar
[49] Pop, I.S.: A stabilized Chebyshev-Galerkin approach for the biharmonic operator. Bul. Stint. Univ. Baia-Mare Ser. B 14, 335–344 (2000) Google Scholar
[50] Pop, I.S., Gheorghiu, C.I.: A Chebyshev-Galerkin method for fourth order problems. In: Proceedings of ICAOR, Cluj-Napoca, vol. II, pp. 217–220 (1997) Google Scholar
[51] Roos, H.G., Pfeiffer, E.: A convergence result for the tau method. Computing 42, 81–84 (1989) CrossRef, zbMATH, MathSciNet, Google Scholar
[52] Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
[53] Shen, J.: Efficient spectral-Galerkin method II. Direct solvers of second and fourth order equations by using Chebyshev polynomials. SIAM J. Sci. Comput. 16, 74–87 (1995) CrossRef, zbMATH, MathSciNet, Google Scholar
[54] Shkalikov, A.A.: Spectral portrait of the Orr-Sommerfeld operator with large Reynolds numbers. arXiv:math-ph/0304030v1 (2003). Accessed 25 Aug 2010 Google Scholar
[55] Shkalikov, A.: Spectral portrait and the resolvent growth of a model problem associated with the Orr-Sommerfeld equation. arXiv:math.FA/0306342v1 (2003). Accessed 25 Aug 2010 Google Scholar
[56] Smith, M.K.: The mechanism for long-wave instability in thin liquid films. J. Fluid Mech. 217, 469–485 (1990) CrossRef, zbMATH, Google Scholar
[57] Trefethen, L.N.: Pseudospectra of linear operators. SIAM Rev. 39, 383–406 (1997) CrossRef, zbMATH, MathSciNet, Google Scholar
[58] Trefethen, L.N.: Computation of pseudospectra. Acta Numerica 9, 247–295 (1999) CrossRef, MathSciNet, Google Scholar
[59] Trefethen, L.N., Trummer, M.R.: An instability phenomenon in spectral methods. SIAM J. Numer. Anal. 24, 1008–1023 (1987) CrossRef, zbMATH, MathSciNet, Google Scholar
[60] Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. The Behavior of Nonnormal Matrices. Princeton University Press, Princeton and Oxford (2005) zbMATH, Google Scholar
[61] Tretter, Ch.: A linearization for a class of λλ-nonlinear boundary eigenvalue problems. J. Math. Anal. Appl. 247, 331–355 (2000) CrossRef, zbMATH, MathSciNet, Google Scholar
[62] Tretter, Ch.: Boundary eigenvalue problems for differential equations Nη=λPηNη=λPη with λλ-polynomial boundary conditions. Integr. J. Diff. Equat. 170, 408–471 (2001) CrossRef, zbMATH, MathSciNet, Google Scholar
[63] Trif, D.: Operatorial tau method for higher order differential problems. Br. J. Math. Comput. Sci. 3, 772–793 (2013) Google Scholar
[64] Zebib, A.: A Chebyshev method for the solution of boundary value problems. J. Comput. Phys. 53, 443–455 (1984) CrossRef, zbMATH, MathSciNet, Google Scholar
[65] Zebib, A.: Removal of spurious modes encountered in solving stability problems by spectral methods. J. Comput. Phys. 70, 521–525 (1987) CrossRef, zbMATH, Google Scholar

Chapter

Ch. 3 The Chebyshev Collocation Method
https://doi.org/10.1007/978-3-319-06230-3_3

The chapter is devoted to the efficient implementation of Chebyshev collocation method. First, the performances of the method in solving fourth order GEPs are compared with those of ChT and ChG counterparts. Then, ChC method is used to solve some genuinely high order, i.e., larger than two, and/or singularly perturbed eigenvalue problems. Two of them, of sixth and eighth order represent linear hydrodynamic stability problems. Also some fourth order problems with variable coefficients (tensile instabilities of thin annular plates etc.) are successfully considered. In order to reduce the high order problems to systems of second order equations supplied with Dirichlet boundary conditions we introduce a so called “\(D^{(2)}\)strategy or factorization. Using this strategy with \(N=2^10\) a conjecture with respect to the first eigenvalue of the Viola’s problem is stated. This is a fourth order singularly perturbed eigenvalue problem. A special attention is paid to the well known Mathieu’s system as a MEP. A lot of eigenmodes and eigenfrequencies corresponding to various geometries of the vibrating elliptic membrane problem, in which this system is originated, are displayed. In order to avoid spurious eigenvalues (at infinity) and to improve the computation of a specified region of the spectrum, mainly in case of large problems, some Jacobi Davidson type methods are used. Making use of the pseudospectrum of a singular GEP we comment on the backward stability and the order of convergence of JD and Arnoldi methods in computing the first two eigenvalues.

[1] Babuska, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1), Volume II of Handbook of Numerical Analysis, pp. 645–785. Elsevier Science B.V, Amsterdam (1991) Google Scholar

[2] Boomkamp, P.A.M., Boersma, B.J., Miesen, R.H.M., Beijnon, G.V.A.: A chebyshev collocation method for solving two-phase flow stability problems. J. Comput. Phys. 132, 191–200 (1997) CrossRef, zbMATH, Google Scholar

[3] Boyd, J.P.: Traps and snares in eigenvalue calculations with application to pseudospectral computations of ocean tides in a Basin bounded by meridians. J. Comput. Phys. 126, 11–20 (1996). Corigendum 136, 227–228 (1997) Google Scholar

[4] Boyd, J.P., Rangan, C., Bucksbaum, H.: Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped fourier-sine method with laguerre series and rational chebyshev expansions. J. Comput. Phys. 188, 56–74 (2003) CrossRef, zbMATH, Google Scholar

[5] Boyce, W.E., Di Prima, R.C.: Elementary Differential Equations and Boundary Value Problems, 9th edn. Wiley, India (2009) Google Scholar

[6] Chanane, B.: Accurate solutions of fourth order sturm-liouville problems. J. Comput. Appl. Math. 234, 3064–3071 (2010) CrossRef, zbMATH, MathSciNet, Google Scholar

[7] Coman, C.D., Haughton, D.M.: On some approximate methods for the tensile instabilities of thin annular plates. J. Eng. Math. 56, 79–99 (2006) CrossRef, zbMATH, MathSciNet, Google Scholar

[8] Dongarra, J.J., Straughan, B., Walker, D.W.: Chebyshev tau-qz algorithm for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–434 (1996) CrossRef, zbMATH, MathSciNet, Google Scholar

[9] Dragomirescu, I.F., Gheorghiu, C.I.: Analytical and numerical solutions to an electrohydrodynamic stability problem. Appl. Math. Comput. (2010). doi: 10.1016/j.amc.2010.05.028

[10] Fichera, G.: Numerical and Quantitative Analysis. Pitman Press, London (1978) zbMATH, Google Scholar

[11] Finch, S.R.: Mathieu eigenvalues. http://www.algo.inria.fr/csolve/mthu.pdf (2008). Accessed 15 Aug 2012

[12] Fornberg, B.: A Practical Guide to Pseudospectral Mathods. Cambridge University Press, Cambridge (1998) Google Scholar

[13] Funaro, D., Heinrichs, W.: Some results about the pseudospectral approximation of one-dimensional fourth-order problems. Numer. Math. 58, 399–418 (1990) CrossRef, zbMATH, MathSciNet, Google Scholar

[14] Georgescu, A., Pasca, D., Gradinaru, S., Gavrilescu, M.: Bifurcation manifolds in multiparametric linear stability of continua. ZAMM 73, T767–T768 (1993) zbMATH, Google Scholar

[15] Gheorghiu, C.I., Dragomirescu, I.F.: Spectral methods in linear stability. application to thermal convection with variable gravity field. Appl. Numer. Math. 59, 1290–1302 (2009) CrossRef, zbMATH, MathSciNet, Google Scholar

[16] Gheorghiu, C.I., Hochstenbach, M.E., PLestenjak, B., Rommes. J.: Spectral collocation solutions to multiparameter Mathieu’s system. Appl. Math. Comput. 218, 11990–12000 (2012) Google Scholar

[17] Gheorghiu, C.I., Rommes, J.: Application of the jacobi-davidson method to accurate analysis of singular linear hydrodynamoc stability problems. Int. J. Numer. Meth. Fluids. 71, 358–369 (2013) CrossRef, MathSciNet, Google Scholar

[18] Giannakis, D., Fischer, P.F., Rosner, R.: A spectral galerkin method for the coupled orr-sommerfeld and induction equations for free-surface mhd. J. Comput. Phys. 228, 1188–1233 (2009) CrossRef, zbMATH, MathSciNet, Google Scholar

[19] Golub, G.H., Wilkinson, J.H.: Ill-conditioned eigensystems and the computation of the jordan canonical form. SIAM Rev. 18, 578–619 (1976) CrossRef, zbMATH, MathSciNet, Google Scholar

[20] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) zbMATH, Google Scholar

[21] Golub, G.H., van der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123, 35–65 (2000) CrossRef, zbMATH, MathSciNet, Google Scholar

[22] Greenberg, L., Marletta, M.: Algorithm 775: the code sleuth for solving fourth-order sturm-liouville problems. ACM T. Math. Software. 23, 453–493 (1997) CrossRef, zbMATH, MathSciNet, Google Scholar

[23] Griffel, D.H.: Applied Functional Analysis, 2nd edn. Dover Publications Inc, Mineola (1985) Google Scholar

[24] Guo, B-y, Wang, Z-q, Wan, Z-s, Chu, D.: Second order jacobi approximation with applications to fourth-order differential equations. Appl. Numer. Math. 55, 480–502 (2005) CrossRef, zbMATH, MathSciNet, Google Scholar

[25] Hill, A.A., Straughan, B.: A legendre spectral element method for eigenvalues in hydrodynamic stability. J. Comput. Appl. Math. 193, 363–381 (2006) CrossRef, zbMATH, MathSciNet, Google Scholar

[26] Hochstenbach, M.E., Plestenjak, B.: Backward error, condition numbers, and pseudospectra for the multiparameter eigenvalue problem. Linear Algebra Appl. 375, 63–81 (2003) CrossRef, zbMATH, MathSciNet, Google Scholar

[27] Hoepffner, J.: Implementation of boundary conditions. http://www.lmm.jussieu.fr/hoepffner/boundarycondition.pdf (2010). Accessed 25 Aug 2012

[28] Huang, W., Sloan, D.M.: The pseudospectral method for third-order differential equations. SIAM J. Numer. Anal. 29, 1626–1647 (1992) CrossRef, zbMATH, MathSciNet, Google Scholar

[29] Igbokoyi, A.O., Tiab, D.: New method of well test analysis in naturally fractured reservoirs based on elliptical flow. J. Can. Pet. Tehnol. 49, 1–15 (2010) Google Scholar

[30] Melenk, J.M., Kirchner, N.P., Schwab, C.: Spectral galerkin discretization for hydrodynamic stability problems. Computing 65, 97–118 (2000) CrossRef, zbMATH, MathSciNet, Google Scholar

[31] Neves, A.G.M.: Eigenmodes and eigenfrequencies of vibrating elliptic membranes: a klein oscillation theorem and numerical calculations. Commun. Pure Appl. Anal. 9, 611–624 (2004) CrossRef, MathSciNet, Google Scholar

[32] Quarteroni, A., Saleri, F.: Scientific computing with MATLAB and Octave, 2nd edn. Springer, Berlin (2006) Google Scholar

[33] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer, Berlin (2007) zbMATH, Google Scholar

[34] Ruby, L.: Applications of the mathieu equation. Am. J. Phys. 64, 39–44 (1996) CrossRef, MathSciNet, Google Scholar

[35] Sleeman, B.D.: Multiparameter spectral theory and separation of variables. J. Phys. A: Math. Theor. 41, 1–20 (2008) CrossRef, MathSciNet, Google Scholar

[36] Sleijpen, J.L.: http://www.math.uu.nl/people/sleijpen/JD_software/JDQZ.html. Accessed 20 Feb 2011

[37] Sleijpen, J.L., van der Vorst, H.A.A.: A jacobi-davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. A. 17, 401–425 (1996) CrossRef, zbMATH, Google Scholar

[38] Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Springer, New York (1992) CrossRef, zbMATH, Google Scholar

[39] Straughan, B., Walker, D.W.: Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Comput. Phys. 127, 128–141 (1996) CrossRef, zbMATH, MathSciNet, Google Scholar

[40] Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, New York (1990) zbMATH, Google Scholar

[41] Trif, D.: Operatorial tau method for higher order differential problems. Br. J. Math. Comput. Sci. 3, 772–793 (2013) Google Scholar

[42] Valdettaro, L., Rieutord, M., Braconnier, T., Frayssé, V.: Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and arnoldi-chebyshev algorithm. J. Comput. Appl. Math. 205, 382–393 (2007) CrossRef, zbMATH, MathSciNet, Google Scholar

[43] Valério, J.V., Carvalho, M.S., Tomei, C.: Filtering the eigenvalues at infinity from the linear stability analysis of incompressible flows. J. Comput. Phys. 227, 229–243 (2007), CrossRef, zbMATH, MathSciNet, Google Scholar

[44] van Dorsslaer, J.L.M.: Pseudospectra for matrix pencils and stability of equilibria. BIT 37, 833–845 (1997) CrossRef, MathSciNet, Google Scholar

[45] van Noorden, T.L., Rommes, J.: Computing a partial generalized real schur form using the jacobi-davidson method. Numer Linear Algebr. 14, 197–215 (2007) CrossRef, zbMATH, Google Scholar

[46] Volkmer, H.: Multiparameter Problems and Expansion Theorems. Lecture Notes in Mathematics, vol. 1356. Springer, New York (1988) Google Scholar

[47] Weideman, J.A.C., Reddy, S.C.: A matlab differentiation matrix suite. ACM Trans. Math. Software 26, 465–519 (2000) CrossRef, MathSciNet, Google Scholar

[48] Wilson, H.B.: Vibration modes of an elliptic membrane. Available from http://www.mathworks.com/matlabcentral/fileexchange. MATLAB File Exchange, The MathWorks, Natick (2004)

[49] Wilson, H.B., Turcotte, L.S., Halpern, D.: Advanced Mathematics and Mechanics Applications Using MATLAB, 3rd edn. Chapman and Hall/CRC, Boca Raton (2003) zbMATH, Google Scholar

[50] Wilson, H.B., Scharstein, R.W.: Computing elliptic membrane high frequencies by mathieu and galerkin methods. J. Eng. Math. 57, 41–55 (2007) CrossRef, zbMATH, MathSciNet, Google Scholar

Chapter

Ch. 4 The Laguerre Collocation Method
https://doi.org/10.1007/978-3-319-06230-3_4

The chapter introduces first the functional framework corresponding to the spectral collocation method based on Laguerre functions. The main advantage of these functions is the fact that they decrease smoothly to zero at infinity along with their derivatives. We speculate this behavior in imposing boundary conditions at large distances. On the half-line we solve high order eigenvalue problems, linear as well as some genuinely nonlinear third and fourth order boundary value problems. The applications come from fluid mechanics, i.e., Blasius, Falkner-Skan, density profile equation, Ekman boundary layer etc. and foundation engineering. Consequently, we avoid the empiric domain truncation coupled with various numerical technique (mainly shooting) as a strategy to solve such problems. Some second order eigenvalue problems along with singularly perturbed boundary value problems are also considered. A special attention is payed to the influence of the scaling parameter (which maps the half-line into itself) on the repartition of the Laguerre nodes. We manually tune this geometrical parameter in order resolve narrow regions with high variations of solutions, i.e., the so called boundary or interior layers. Consequently, no domain decomposition, domain truncation and shooting have been used in our numerical experiments. Based on the pseudospectra of two GEPs we comment on limitations of the linear hydrodynamic stability analysis. We also observe that the non-normality of a spectral method depends on the discretization (method itself) and at the same time on the bases of functions (polynomials) used.

[1] Acheson, D.J.: Elementary Fluid Dynamics. Clarendon Press, Oxford (1992) Google Scholar

[2] Allen, L., Bridges, T.J.: Hydrodynamic stability of the Ekman boundary layer including interaction with a compliant surface: a numerical framework. Eur. J. Mech. B Fluids 22, 239–258 (2003) CrossRef, zbMATH, MathSciNet, Google Scholar

[3] Bernardi, C., Maday, Y.: Approximations Spectrales de Problems aux Limites Elliptiques. Springer, Paris (1992) zbMATH, Google Scholar

[4] Baxley, J.V.: Existence and uniqueness for nonlinear boundary value problems on infinite intervals. J. Math. Anal. Appl. 147, 122–133 (1990) CrossRef, zbMATH, MathSciNet, Google Scholar

[5] Bobisud, L.E.: Existence of positive solutions to some nonlinear singular boundary value problems on finite and infinite intervals. J. Math. Anal. Appl. 173, 69–83 (1993) CrossRef, zbMATH, MathSciNet, Google Scholar

[6] Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, Inc., Mineola (2000) Google Scholar

[7] Cohen, D.S., Fokas, A., Lagerstrom, P.A.: Proof of some asymptotic results for a model equation for low Reynolds number flow. SIAM J. Appl. Math. 35, 187–207 (1978) CrossRef, zbMATH, MathSciNet, Google Scholar

[8] Fazio, R.: A free boundary value approach and Keller’s box scheme for BVPs on infinite intervals. Int. J. Comput. Math. 80, 1549–1560 (2003) CrossRef, zbMATH, MathSciNet, Google Scholar

[9] Finch, S.: Prandtl-Blasius flow. http://algo.inria.fr/csolve/bla.pdf (2008/11/12). Accessed 12 June 2012

[10] Fornberg, B.: A Practical Guide to Pseudospectral Mathods. Cambridge University Press, Cambridge (1998) Google Scholar

[11] Gheorghiu, C.I.: Laguerre collocation solutions to boundary layer type problems. Numer. Algor. 64, 385–401 (2013) CrossRef, zbMATH, MathSciNet, Google Scholar

[12] Gheorghiu, C.I.: Pseudospectral solutions to some singular nonlinear BVPs. Applications in Nonlinear Mechanics. Numer. Algor. doi: 10.1007/s11075-014-9834-z.

[13] Gheorghiu, C.I., Rommes, J.: Application of the jacobi-davidson method to accurate analysis of singular linear hydrodynamic stability problems. Int. J. Numer. Method Fluids 71, 358–369 (2012) CrossRef, MathSciNet, Google Scholar

[14] Greenberg, L., Marletta, M.: Numerical methods for higher order Sturm-Liouville problems. J. Comput. Appl. Math. 125, 367–383 (2000) CrossRef, zbMATH, MathSciNet, Google Scholar

[15] Hoepffner, J.: Implementation of boundary conditions. http://www.lmm.jussieu.fr/hoepffner/boundarycondition.pdf (2010). Accessed 25 Aug 2012

[16] Hsiao, G.C.: Singular perturbations for a nonlinear differential equation with a small parameter. SIAM J. Math. Anal. 4, 283–301 (1973) CrossRef, zbMATH, MathSciNet, Google Scholar

[17] Ioss, G., Bruun, H.: True, bifurcation of the stationary Ekman flow into a stable periodic flow. Arch. Rat. Mech. Anal. 68, 227–256 (1978) Google Scholar

[18] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient numerical solution of the density profile equation in hydrodynamics. J. Sci. Comput. 32, 411–424 (2007) CrossRef, zbMATH, MathSciNet, Google Scholar

[19] Konyukhova, N.B., Lima, P.M., Morgado, M.L., Soloviev, M.B.: Bubbles and droplets in nonlinear physics models: analysis and numerical simulation of singular nonlinear boundary value problems. Comput. Math. Math. Phys. 48, 2018–2058 (2008) CrossRef, MathSciNet, Google Scholar

[20] Kulikov, G.Y., Lima, P.M., Morgado, M.L.: Analysis and numerical approximation of singular boundary value problems with p-Laplacians in fluid mechanics. J. Comput. Appl. Math. http://dx.doi.org/10.1016/j.cam.2013.09.071

[21] Lentini, M., Keller, H.B.: Boundary value problems on semi-infinite intervals and their numerical solution. SIAM J. Numer. Anal. 17, 577–604 (1980) CrossRef, zbMATH, MathSciNet, Google Scholar

[22] Lima, P.M., Konyukhova, N.B., Chemetov, N.V., Sukov, A.I.: Analytical- numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comput. Appl. Math. 189, 260–273 (2006) CrossRef, zbMATH, MathSciNet, Google Scholar

[23] Lilly, D.K.: On the instability of Ekman boundary flow. J. Atmospheric Sci. 23, 481–494 (1966)CrossRefGoogle Scholar

[24] Markowich, P.A.: Analysis of boundary value problems on infinite intervals. SIAM J. Math. Anal. 14, 11–37 (1983) CrossRef, zbMATH, MathSciNet, Google Scholar

[25] Melander, M.V.: An algorithmic approach to the linear stability of the Ekman layer. J. Fluid Mech. 132, 283–293 (1983) CrossRef, zbMATH, Google Scholar

[26] Ockendon, H., Ockendon, J.R.: Viscous Flow. Cambridge University Press, Cambridge (1995), CrossRef, zbMATH, Google Scholar

[27] O’Regan, D.: Solvability of some singular boundary value problems on the semi-infinite interval. Can. J. Math. 48, 143–158 (1996), CrossRef, zbMATH, Google Scholar

[28] Pruess, S., Fulton, C.T.: Mathematical software for Sturm-Liouville problems. ACM Trans. Math. Softw. 19, 360–376 (1993) CrossRef, zbMATH, Google Scholar

[29] Pryce, J.D.: A test package for Sturm-Liouville solvers. ACM Trans. Math. Softw. 25, 21–57 (1999) CrossRef, zbMATH, MathSciNet, Google Scholar

[30] Rosales-Vera, M., Valencia, A.: Solutions of Falkner-Skan equation with heat transfer by Fourier series. Int. Comm. Heat Mass Transf. 37, 761–765 (2010) CrossRef, Google Scholar

[31] Rubel, L.A.: An estimation of the error due to the truncated boundary in the numerical solution of the Blasius equation. Quart. Appl. Math. 13, 203–206 (1955), zbMATH, MathSciNet, Google Scholar

[32] Schlichting, H.: Boundary Layer Theory, 4th edn. McGraw-Hill, NewYork (1960) zbMATH, Google Scholar

[33] Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, New York (2001) CrossRef, zbMATH, Google Scholar

[34] Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38, 1113–1133 (2000) CrossRef, zbMATH, MathSciNet, Google Scholar

[35] Shen, J., Wang, L.-L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5, 195–241 (2009) MathSciNet, Google Scholar

[36] Shen, J., Tang, T., Wang, L.-L.: Spectral Methods. Springer, Berlin (2011) CrossRef, zbMATH, Google Scholar

[37] Straughan, B., Harfash, A.J.: Instability in Poiseuille flow in a porous medium with slip boundary conditions. Microfluid. Nanofluid (2012). doi: 10.1007/s10404-012-1131-3

[38] Tang, T., Trummer, M.R.: Boundary layer resolving pseudospectral methods for singular perturbation problem. SIAM J. Sci. Comput. 17, 430–438 (1996) CrossRef, zbMATH, MathSciNet, Google Scholar

[39] Trefethen, L.N.: Pseudospectra of linear operators. SIAM Rev. 39, 383–406 (1997) CrossRef, zbMATH, MathSciNet, Google Scholar

[40] Trefethen, L.N., Trefethen, A.E., Reddy, S.C., Driscoll, T.A.: Hydrodynamic stability without eigenvalues. Science 261, 578–584 (1993) CrossRef, zbMATH, MathSciNet, Google Scholar

[41] Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26, 465–519 (2000) CrossRef, MathSciNet, Google Scholar

Chapter

Ch. 5 Conclusions and Further Developments
https://doi.org/10.1007/978-3-319-06230-3_5

Spectral tau, Galerkin and collocation methods are briefly revised. On bounded domains all of them are constructed using Chebyshev polynomials. Collocation on an unbounded domain is based on Laguerre functions. Practical and computational aspects of these methods are mainly emphasized. High order eigenvalue problems, i.e., of fourth, sixth and eighth orders along with genuinely nonlinear and singular perturbed two-point eigenvalue problems are considered. The capabilities of the methods are analysed based on the conditioning and normality of the differentiation matrices in both the physical and phase (coefficient) spaces.

Appendix

Algebraic Two-Parameter Eigenvalue Problems

??

PDF

pdf file

Book coordinates

C.I. Gheorghiu, Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural Mechanics and Beyond, SpringerBriefs in Mathematics, 2014, 120+X pp., ISBN 978-3-319-06229-7,
DOI: 10.1007/978-3-319-06230-3

Book Title

Spectral Methods for Non-Standard Eigenvalue Problems

Publisher

Springer

Print ISBN

978-3-319-06229-7

Authors

Calin-Ioan Gheorghiu

Online ISBN

978-3-319-06230-3

Google scholar

2014

Related Posts