The iterates of positive linear operators with the set of constant functions as the fixed point set

Abstract

Let Omega subset of R-p, p is an element of N* be a nonempty subset and B(Omega) be the Banach lattice of all bounded real functions on Omega, equipped with sup norm.

Let X subset of B(Omega) be a linear sublattice of B(Omega) and A: X -> X be a positive linear operator with constant functions as the fixed point set.

In this paper, using the weakly Picard operators techniques, we study the iterates of the operator A.

Some relevant examples are also given.

Authors

T. Catinas
(Babes Bolyai Univ.)

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

I.A. Rus
(Babes Bolyai Univ.)

Keywords

Banach lattice; iterates of an operator; linear operator; linear and positive operator; linear fixed point partition; fixed point; weakly Picard operator

Cite this paper as:

T. Catinas, D. Otrocol, I.A. Rus, The iterates of positive linear operators with the set of constant functions as the fixed point set, Carpathian J. Math., Vol. 32(2016) no. 2, pp. 165-172.

PDF

soon

About this paper

Journal

Carpathian Journal of Mathematics

Publisher Name

North Univ. Baia Mare, Romania

DOI
Print ISSN

1584-2851

Online ISSN

1843-4401

MR

MR3587884

ZBL

Google Scholar

[1] Agratini, O., Approximation by linear operators, Cluj University Press, 2001 (in Romanian)

[2] Agratini, O. and Rus, I. A., Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline, 44 (2003), 555–563

[3] Agratini, O. and Rus, I. A., Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8 (2003), No. 2, 159–168

[4] Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, 1994

[5] Andras, S. and Rus, I. A., Iterates of Cesaro operators, via fixed point principle, Fixed Point Theory 11 (2010), No. 2, 171–178

[6] Bohl, E., Linear operator equations on a partially ordered vector space, Aeq. Math., 4 (1970), fas. 1/2, 89–98

[7] Cristescu, R., Ordered vector spaces and linear operators, Abacus Press, 1976

[8] Gavrea, I. and Ivan, M., The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24 (2011), No. 12, 2068–2071

[9] Gavrea, I. and Ivan, M., On the iterates of positive linear operators, J. Approx. Theory, 163 (2011), No. 9, 1076–1079

[10] Gavrea, I. and Ivan, M., Asymptotic behaviour of the iterates of positive linear operators, Abstr. Appl. Anal., 2011, Art. ID 670509, 11 pp.

[11] Gavrea, I. and Ivan, M., On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl, 372 (2010), No. 2, 366–368

[12] Gonska, H., Pitul, P. and Rasa, I., Over-iterates of Bernstein-Stancu operators, Calcolo, 44 (2007), 117–125

[13] Heikkila, S. and Roach, G. F., On equivalent norms and the contraction mapping principle, Nonlinear Anal., 8 (1984), No. 10, 1241–1252

[14] Rasa, I., Asymptotic behaviour of iterates of positive linear operators, Jaen J. Approx., 1 (2009), No. 2, 195–204

[15] Rus, I. A., Generalized contractions and applications, Cluj Univ. Press, 2001

[16] Rus, I. A., Iterates of Stancu operators, via contraction principle, Studia Univ. Babes¸-Bolyai Math., 47 (2002), No. 4, 101–104

[17] Rus, I. A., Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292 (2004), No. 1, 259–2 172 Teodora Catinas¸, Diana Otrocol and Ioan A. Rus ˘

[18] Rus, I. A., Iterates of Stancu operators (via contraction principle) revisited, Fixed Point Theory, 11 (2010), No. 2, 369–374

[19] Rus, I. A., Fixed points and interpolation point set of a positive linear operator on C(D), Studia Univ. Babes-Bolyai, Math., 55 (2010), No. 4, 243–248

[20] Rus, I. A., Heuristic introduction to weakly Picard operators theory, Creative Math. Inf., 23 (2014), No. 2, 243–252

[21] Rus, I. A., Iterates of increasing linear operators, via Maia’s fixed point theorem, Stud. Univ. Babes¸-Bolyai Math., 60 (2015), No. 1, 91–98

[22] Stancu, D. D., On some generalization of Bernstein polynomials, Studia Univ. Babes¸-Bolyai Math., 14 (1969), No. 2, 31-45 (in Romanian)

The iterates of positive linear operators with the set of constant functions as the fixed point set

Teodora Cătinaş, Diana Otrocol∗∗ and Ioan A. Rus Babeş-Bolyai University
Department of Mathematics
M. Kogălniceanu St., No. 1, RO-400084, Cluj-Napoca, Romania
tcatinas@math.ubbcluj.ro, iarus@math.ubbcluj.ro ∗∗ Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
Fântânele St., No. 57, 400110, Cluj-Napoca, Romania
dotrocol@ictp.acad.ro
(Received: date)
Key words and phrases:
Banach lattice, iterates of an operator, linear operator, linear and positive operator, linear fixed point partition, fixed point, weakly Picard operator.
2010 Mathematics Subject Classification:
47H10, 46B42, 47B65.

1. Introduction

Let XX be a real Banach space and A:XXA\colon X\rightarrow X be a linear operator. Let us denote(AD)A(x):={xX|An(x)x\ (AD)_{A}(x^{\ast}):=\{x\in X|\ A^{n}(x)\rightarrow x^{\ast} as n}n\rightarrow\infty\} the attraction domain of a fixed point xx^{\ast} of the operator AA. Let FA:={xX|A(x)=x}F_{A}:=\{x\in X|\ A(x)=x\} be the fixed point set of AA. By definition, the operator AA is weakly Picard operator (WPO) if, X=xFA(AD)A(x).X=\underset{x^{\ast}\in F_{A}}{\cup}(AD)_{A}(x^{\ast}).

Let us denote by θ\theta the zero element of XX. It is clear that (AD)A(θ)(AD)_{A}(\theta) is a linear subspace of XX and (AD)A(x)={x}+(AD)A(θ),(AD)_{A}(x^{\ast})=\{x^{\ast}\}+(AD)_{A}(\theta), i.e., is an affine subspace of XX. This remark gives rise to the following notion (see [15]).

A partition of XX, X=xFAXx,X=\underset{x^{\ast}\in F_{A}}{\cup}X_{x^{\ast}}, is a linear fixed point partition (LFPP) of XX with respect to a linear operator AA iff:

  • (i)

    XxFA={x},xFA;X_{x^{\ast}}\cap F_{A}=\{x^{\ast}\},\ \forall x^{\ast}\in F_{A};

  • (ii)

    A(Xx)Xx,xFA;A(X_{x^{\ast}})\subset X_{x^{\ast}},\ \forall x^{\ast}\in F_{A};

  • (iii)

    XθX_{\theta} is a linear subspace of X;X;

  • (iv)

    Xx={x}+Xθ.X_{x^{\ast}}=\{x^{\ast}\}+X_{\theta}.

The aim of this paper is to study the iterates of a linear operator, in the case of function spaces, using the technique of LFPP of the space.

2. Preliminaries

Let Ωp,\Omega\subset\mathbb{R}^{p}, pp\in\mathbb{N}^{\ast} be a nonempty subset, B(Ω)B(\Omega) be the Banach lattice of all bounded real valued functions on Ω\Omega, equipped with supnormsup\ norm. Let XB(Ω)X\subset B(\Omega) be a linear sublattice of XX and A:XXA\colon X\rightarrow X be a linear operator with constant functions as the fixed point set.

Following [15], we consider some notions that will be used in the sequel.

Definition 2.1.

The operator A:XXA\colon X\rightarrow X is a weakly Picard operator (WPO) if the sequence (An(f))n(A^{n}(f))_{n\in\mathbb{N}} converges, for all fB(Ω)f\in B(\Omega), and the limit (which may depend on ff) is a fixed point of AA.

Definition 2.2.

If AA is WPO, then we define the operator A,A:XXA^{\infty},\;A^{\infty}\colon X\rightarrow X, by

A(f):=limnAn(f).A^{\infty}(f):=\underset{n\rightarrow\infty}A^{n}(f).

We remark that A(X)=FA.A^{\infty}(X)=F_{A}.

Definition 2.3.

Let A:XXA\colon X\rightarrow X be a weakly Picard operator and ψ:++\psi\colon\mathbb{R}_{+}\mathbb{\rightarrow R}_{+} an increasing function, continuous in 0 and ψ(0)=0.\psi(0)=0. The operator AA is said to be a ψ\psi-weakly Picard operator (ψ\psi-WPO) iff

d(f,A(f))ψd(f,A(f)),fX.d(f,A^{\infty}(f))\leq\psi d(f,A(f)),\ \forall f\in X.
Definition 2.4.

The operator A:XXA\colon X\rightarrow X is a Picard operator (PO) if AA is WPO and FAF_{A} is a unit set.

Remark 2.1.

We observe that Ak(X)A^{k}(X) is an invariant subset of AA for each kk\in\mathbb{N}^{\ast} and FAAk(X)F_{A}\subset A^{k}(X). We suppose that

Ak:=A|Ak(X):Ak(X)Ak(X) is WPO.A_{k}:=A|_{A^{k}(X)}\colon A^{k}(X)\rightarrow A^{k}(X)\text{ is WPO.}

Then we have that

Akn(u)Ak(u) as n,uAk(X),A_{k}^{n}(u)\rightarrow A_{k}^{\infty}(u)\text{ as }n\rightarrow\infty,\ \forall u\in A^{k}(X),

i.e., An(Ak(f))Ak(Ak(f))=A(f).A^{n}(A^{k}(f))\rightarrow A_{k}^{\infty}(A^{k}(f))=A^{\infty}(f).\ So, if for some k,A|Ak(X)k\in\mathbb{N}^{\ast},\ A|_{A^{k}(X)} is WPO then, A:XXA\colon X\rightarrow X is WPO and A(f)=Ak(Ak(f)).A^{\infty}(f)=A_{k}^{\infty}(A^{k}(f)).

Remark 2.2.

Let ϕ:X\phi\colon X\rightarrow\mathbb{R} be a linear functional and A:XXA\colon X\rightarrow X a linear operator. We suppose that ϕ\phi is an invariant functional of AA, i.e., ϕ(A(f))=ϕ(f)\phi(A(f))=\phi(f), fX\forall f\in X. Let us denote, for λ,\lambda\in\mathbb{R},

Xλ:={fX|ϕ(f)=λ}.X_{\lambda}:=\{f\in X|\ \phi(f)=\lambda\}.

Then X=λXλX=\underset{\lambda\in\mathbb{R}}{\cup}X_{\lambda} is a partition of X.X. If XλFA={fλ},λX_{\lambda}\cap F_{A}=\{f_{\lambda}^{\ast}\},\ \forall\lambda\in\mathbb{R}, then, X=λXλX=\underset{\lambda\in\mathbb{R}}{\cup}X_{\lambda} is a LFPP of XX with respect to A.A.

We also need the following result.

Lemma 2.1.

([15]) Let A:XXA\colon X\rightarrow X be a linear operator. We suppose that X=fFAXfX=\underset{f^{\ast}\in F_{A}}{\cup}X_{f^{\ast}} is a LFPP of XX with respect to AA. Then:

  • (i)

    If A|Xθ:XθXθA|_{X_{\theta}}\colon X_{\theta}\rightarrow X_{\theta} is PO, then AA is WPO.

  • (ii)

    If AA is WPO, then A(f)=f,fXf,A^{\infty}(f)=f^{\ast},\ \forall f\in X_{f^{\ast}}, fFAf^{\ast}\in F_{A}.

As a suggestion for finding a LFPP of the space, the following result is useful.

Theorem 2.1.

(Characterization theorem, [11]) An operator AA is a weakly Picard operator if and only if there exists a partition of X,X, X=λΛXλ,X={\textstyle\bigcup\limits_{\lambda\in\Lambda}}X_{\lambda}, such that

  • (a)

    A(Xλ)Xλ,A(X_{\lambda})\subset X_{\lambda}, λΛ;\forall\lambda\in\Lambda;

  • (b)

    A|Xλ:XλXλ\left.A\right|_{X_{\lambda}}\colon X_{\lambda}\rightarrow X_{\lambda} is a Picard operator, λΛ.\forall\lambda\in\Lambda.

The limit behavior for the iterates of some classes of positive linear operators were also studied, for example, in [2], [3], [7], [8], [9], [12], [13], [14].

3. Basic results

Let Ωp,\Omega\subset\mathbb{R}^{p}, pp\in\mathbb{N}^{\mathbb{\ast}} be a nonempty subset, B(Ω)B(\Omega) be the Banach lattice of all bounded real valued functions on Ω,\Omega, equipped with supnormsup\ norm. Let XB(Ω)X\subset B(\Omega) a linear sublattice of B(Ω)B(\Omega) and A:XXA\colon X\rightarrow X be a linear operator. We have

Theorem 3.2.

We suppose that:

  • (i)

    XX contains all constant functions on Ω;\Omega;

  • (ii)

    FAF_{A} consists of all constant functions on Ω;\Omega;

  • (iii)

    X=λXλX=\underset{\lambda\in\mathbb{R}}{\cup}X_{\lambda} is a LFPP of XX with respect to AA such that, for some kk\in\mathbb{N}, we have that:

    A(u)lu,uAk(X0), with some 0<l<1.\left\|A(u)\right\|\leq l\left\|u\right\|,\ \forall u\in A^{k}(X_{0}),\text{ with some }0<l<1.

Then:

  • (a)

    AA is WPO and A(f)=λ,fXλ,λ;A^{\infty}(f)=\lambda,\forall f\in X_{\lambda},\lambda\in\mathbb{R};

  • (b)

    Ak(f)A(f)11lAk(f)A(Ak(f)),fX;\left\|A^{k}(f)-A^{\infty}(f)\right\|\leq\frac{1}{1-l}\left\|A^{k}(f)-A(A^{k}(f))\right\|,\forall f\in X;

  • (c)

    An(Ak(f))A(f)ln1lAk(f)A(Ak(f)),fX,n;\left\|A^{n}(A^{k}(f))-A^{\infty}(f)\right\|\leq\frac{l^{n}}{1-l}\left\|A^{k}(f)-A(A^{k}(f))\right\|,\forall f\in X,\forall n\in\mathbb{N};

  • (d)

    if M>0:Ak(f)A(Ak(f))M,M>0:\left\|A^{k}(f)-A(A^{k}(f))\right\|\leq M, fX,\forall f\in X, then An(Ak(f))unifA(f)A^{n}(A^{k}(f))\overset{unif}{\rightarrow}A^{\infty}(f) as n,n\rightarrow\infty, on X.X.

Proof.
  • (a)

    Let f,gXλf,g\in X_{\lambda}. By linearity of AA and by the fact that fgX0,f-g\in X_{0}, it follows that

    A(f)A(g)=A(fg)lfg, with 0<l<1, f,gXλ,λ.\left\|A(f)-A(g)\right\|=\left\|A(f-g)\right\|\leq l\left\|f-g\right\|,\text{ with}\ \ 0<l<1,\text{ }\forall f,g\in X_{\lambda},\ \lambda\in\mathbb{R}.

    The constant function λXλ\lambda\in X_{\lambda} is a fixed point of A.A. Cosequently, we have that AA is a Picard operator, and taking into account (iii), by Theorem 2.1, it follows that the operator AA is a weakly Picard operator, with A(f)=λ,fXλ,λA^{\infty}(f)=\lambda,\forall f\in X_{\lambda},\lambda\in\mathbb{R}.

  • (b)

    We have

    (3.1) Ak(f)A(f)=Ak(f)λAk(f)A(Ak(f))+A(Ak(f))λ,fX.\left\|A^{k}(f)-A^{\infty}(f)\right\|=\left\|A^{k}(f)-\lambda\right\|\leq\left\|A^{k}(f)-A(A^{k}(f))\right\|+\left\|A(A^{k}(f))-\lambda\right\|,\forall f\in X.

    By (iii), it follows

    (3.2) A(Ak(f))λlAk(f)λ, with fλA(X0).\left\|A(A^{k}(f))-\lambda\right\|\leq l\left\|A^{k}(f)-\lambda\right\|,\text{ with }f-\lambda\in A(X_{0}).

    From (3.1) and (3.2) we get

    Ak(f)λAk(f)A(Ak(f))+lAk(f)λ.\left\|A^{k}(f)-\lambda\right\|\leq\left\|A^{k}(f)-A(A^{k}(f))\right\|+l\left\|A^{k}(f)-\lambda\right\|.

    Then

    Ak(f)A(f)11lAk(f)A(Ak(f)),fX.\left\|A^{k}(f)-A^{\infty}(f)\right\|\leq\frac{1}{1-l}\left\|A^{k}(f)-A(A^{k}(f))\right\|,\forall f\in X.
  • (c)

    We have

    An(Ak(f))An+p(Ak(f))\displaystyle\left\|A^{n}(A^{k}(f))-A^{n+p}(A^{k}(f))\right\|
    An(Ak(f))An+1(Ak(f))+An+1(Ak(f))An+2(Ak(f))\displaystyle\leq\left\|A^{n}(A^{k}(f))-A^{n+1}(A^{k}(f))\right\|+\left\|A^{n+1}(A^{k}(f))-A^{n+2}(A^{k}(f))\right\|
    ++An+p1(Ak(f))An+p(Ak(f))\displaystyle\quad+\cdots+\left\|A^{n+p-1}(A^{k}(f))-A^{n+p}(A^{k}(f))\right\|
    lnAk(f)A(Ak(f))+ln+1Ak(f)A(Ak(f))\displaystyle\leq l^{n}\left\|A^{k}(f)-A(A^{k}(f))\right\|+l^{n+1}\left\|A^{k}(f)-A(A^{k}(f))\right\|
    ++ln+p1Ak(f)A(Ak(f))\displaystyle\quad+\cdots+l^{n+p-1}\left\|A^{k}(f)-A(A^{k}(f))\right\|
    =(ln++ln+p1)Ak(f)A(Ak(f))\displaystyle=(l^{n}+\cdots+l^{n+p-1})\left\|A^{k}(f)-A(A^{k}(f))\right\|
    ln1lAk(f)A(Ak(f)),for n,p.\displaystyle\leq\frac{l^{n}}{1-l}\left\|A^{k}(f)-A(A^{k}(f))\right\|,\text{for }n\in\mathbb{N},p\in\mathbb{N}^{\ast}.

    So, An(Ak(f))A(f)ln1lAk(f)A(Ak(f)),fX,n.\left\|A^{n}(A^{k}(f))-A^{\infty}(f)\right\|\leq\frac{l^{n}}{1-l}\left\|A^{k}(f)-A(A^{k}(f))\right\|,\forall f\in X,\forall n\in\mathbb{N}\text{.}

  • (d)

    By (c) we obtain An(Ak(f))A(f)ln1lMunif0\left\|A^{n}(A^{k}(f))-A^{\infty}(f)\right\|\leq\frac{l^{n}}{1-l}M\overset{unif}{\rightarrow}0.

Let us give a class of operators for which the condition (iii) in Theorem 3.2 is satisfied.

Let X:=C([0,1]p),p,X:=C([0,1]^{p}),\ p\in\mathbb{N}^{\ast}, ak[0,1]p,k=0,m¯,a_{k}\in[0,1]^{p},\ k=\overline{0,m}, p,m,p,m\in\mathbb{N}^{\ast}, are distinct points such that I:=co{ak|k=0,m¯}I:=co\{a_{k}|\ k=\overline{0,m}\} has a nonempty interior, and ψkC([0,1]p,+),k=0,m¯\psi_{k}\in C([0,1]^{p},\mathbb{R}_{+}),k=\overline{0,m}. We suppose that:

  1. (1)

    {ψk|k=0,m¯}\{\psi_{k}|\ k=\overline{0,m}\} is linearly independent;

  2. (2)

    k=0mψk(x)=1,x[0,1]p.\sum\limits_{k=0}^{m}\psi_{k}(x)=1,\ \forall x\in[0,1]^{p}.

Now we consider the following positive linear operator, A:C([0,1]p)C([0,1]p)A\colon C([0,1]^{p})\rightarrow C([0,1]^{p}), A(f):=k=0mf(ak)ψk.A(f):=\sum\limits_{k=0}^{m}f(a_{k})\psi_{k}.

Condition (2)(2) implies that the constant functions are the fixed points of AA. On the other hand, the condition

  1. (3)

    rank[ψi(ak)Im+1]=mrank[\psi_{i}(a_{k})-I_{m+1}]=m

implies that, FA=F_{A}= the set of constant functions.

To study the iterates of A,A, we shall give conditions in which the operator AA has an invariant functional of the following form

ϕ(f):=i=0mcif(ai),\phi(f):=\sum\limits_{i=0}^{m}c_{i}f(a_{i}),

with some ci0,i=0,m¯.c_{i}\geq 0,\ i=\overline{0,m}.

We have the following result.

Theorem 3.3.

In the conditions (1),(2)(1),(2) and (3)(3), there exists cm+1c^{\ast}\in\mathbb{R}^{m+1} such that:

  • (a)

    c0,i=0mci=1;c^{\ast}\geq 0,\sum\limits_{i=0}^{m}c_{i}^{\ast}=1;

  • (b)

    the functional, ϕ:C([0,1]p),ϕ(f):=i=0mcif(ai),\phi\colon C([0,1]^{p})\rightarrow\mathbb{R},\ \phi(f):=\sum\limits_{i=0}^{m}c_{i}^{\ast}f(a_{i}), is an invariant functional of the operator A;A;

  • (c)

    if C([0,1]p)=λXλC([0,1]^{p})=\underset{\lambda\in\mathbb{R}}{\cup}X_{\lambda} is a LFPP corresponding to ϕ\phi, and ψi(x)>0,xI,i=0,m¯,\psi_{i}(x)>0,\forall x\in I,i=\overline{0,m}, then A|X0C(I)=l<1\left\|A|_{X_{0}\cap C(I)}\right\|=l<1, and so, A|C(I)A|_{C(I)} is WPO and A(f)=i=1mcif(ai),fC(I).A^{\infty}(f)=\sum\limits_{i=1}^{m}c_{i}^{\ast}f(a_{i}),f\in C(I).

Proof.

First, we remark that a functional, ϕ(f)=i=0mcif(ai),\phi(f)=\sum\limits_{i=0}^{m}c_{i}f(a_{i}), ci0c_{i}\neq 0, is invariant for AA iff:

i=0mciψk(ai)=ck,k=0,m¯.\sum\limits_{i=0}^{m}c_{i}\psi_{k}(a_{i})=c_{k},\ k=\overline{0,m}.

Let us consider the subset Km+1,K:={cm+1|ci0,i=0mci=1}.K\subset\mathbb{R}^{m+1},\ K:=\{c\in\mathbb{R}^{m+1}|\ c_{i}\geq 0,\ \sum\limits_{i=0}^{m}c_{i}=1\}.\ We take in KK the following function:

T:Km+1,T(c):=(i=0mciψ0(ai),,i=0mciψm(ai)).T\colon K\rightarrow\mathbb{R}^{m+1},\ T(c):=\left(\sum\limits_{i=0}^{m}c_{i}\psi_{0}(a_{i}),\ldots,\sum\limits_{i=0}^{m}c_{i}\psi_{m}(a_{i})\right).

Since the matrix [φi(ak)][\varphi_{i}(a_{k})] is a stochastic matrix, it follows that, T(K)K.T(K)\subset K. From the Brouwer fixed point theorem, there exists cKc^{\ast}\in K such that T(c)=cT(c^{\ast})=c^{\ast}. From the condition (3)(3), it follows that there exists such a unique fixed point. So, we have (a)(a) and (b)(b). Let fX0,f\in X_{0}, i.e., i=0mcif(ai)=0,\sum\limits_{i=0}^{m}c_{i}^{\ast}f(a_{i})=0, and ci>0,i=0,m¯c_{i}^{\ast}>0,\ i=\overline{0,m}. For fC(I)X0f\in C(I)\cap X_{0} we have

|A(f)(x)|\displaystyle\left|A(f)(x)\right| =|k=0mf(ak)ψk(x)|max0km(1ψk(x))f=\displaystyle=\left|\sum\limits_{k=0}^{m}f(a_{k})\psi_{k}(x)\right|\leq\underset{0\leq k\leq m}{\max}(1-\psi_{k}(x))\left\|f\right\|=
=lf, with l<1.\displaystyle=l\left\|f\right\|,\text{ with }l<1.

So, A(f)lf,fC(I),\left\|A(f)\right\|\leq l\left\|f\right\|,\forall f\in C(I), with ϕ(f)=0,\phi(f)=0, and we have (c)(c), from Theorem 3.2. ∎

Remark 3.3.

(see [13]) If ψi,i=0,m¯\psi_{i},\ i=\overline{0,m} are polynomial functions, then the operatorA:C([0,1]p)C([0,1]p)A\colon C([0,1]^{p})\rightarrow C([0,1]^{p}) is WPO and, A(f)=i=0mciψi(ai).A^{\infty}(f)=\sum\limits_{i=0}^{m}c_{i}^{\ast}\psi_{i}(a_{i}).

For presenting the next result we need the following definition.

Definition 3.5.

Let YXY\subset X be a linear subspace of X.X. By definition, an element eYe\in Y is an order unit element if, for any fYf\in Y there exists Mf>0M_{f}>0 such that |f|Mfe.|f|\leq M_{f}e. (See, e.g., [5], [6], [10].)

In this case we have on YY the Minkowski norm, e,\left\|\cdot\right\|_{e}, and it follows:

  • |f|fee;\left|f\right|\leq\left\|f\right\|_{e}e;

  • ffee.\left\|f\right\|\leq\left\|f\right\|_{e}\left\|e\right\|.

Theorem 3.4.

We suppose that:

  • (i)

    AA is a linear positive operator;

  • (ii)

    XX contains all constant functions on Ω;\Omega;

  • (iii)

    FAF_{A} consists of all constant functions on Ω;\Omega;

  • (iv)

    X=λXλX=\underset{\lambda\in\mathbb{R}}{\cup}X_{\lambda} is a LFPP of XX with respect to AA such that, for some kk\in\mathbb{N}^{\ast}, Ak(X0)A^{k}(X_{0}) has an order unit element ee.

Then:

  • (a)

    An(e)(x)0A^{n}(e)(x)\rightarrow 0 as n,xΩn\rightarrow\infty,\forall x\in\Omega implies that An(f)(x)λ,xΩ,fXλ,λA^{n}(f)(x)\rightarrow\lambda,\ \forall x\in\Omega,\forall f\in X_{\lambda},\lambda\in\mathbb{R}, i.e., AA is WPO with respect to pointwise convergence on XX and A(f)=λ,fXλ;A^{\infty}(f)=\lambda,\forall f\in X_{\lambda};

  • (b)

    An(e)0AA^{n}(e)\overset{\left\|\cdot\right\|}{\rightarrow}0\Rightarrow A is WPO with respect to \overset{\left\|\cdot\right\|}{\rightarrow} and A(f)=λ,fXλ,λ;A^{\infty}(f)=\lambda,\forall f\in X_{\lambda},\lambda\in\mathbb{R};

  • (c)

    if there exists l]0,1[l\in]0,1[ such that A(e)leA(e)\leq le then:

    • (1)

      A(f)elfe,fAk(X0);\left\|A(f)\right\|_{e}\leq l\left\|f\right\|_{e},\forall f\in A^{k}(X_{0});

    • (2)

      A(f)A(g)elfge,f,gAk(Xλ),λ;\left\|A(f)-A(g)\right\|_{e}\leq l\left\|f-g\right\|_{e},\forall f,g\in A^{k}(X_{\lambda}),\ \lambda\in\mathbb{R};

    • (3)

      A(f)A2(f)elfA(f)e,fAk(X);\left\|A(f)-A^{2}(f)\right\|_{e}\leq l\left\|f-A(f)\right\|_{e},\forall f\in A^{k}(X);

    • (4)

      fA(f)e11lfA(f)e,fAk(X);\left\|f-A^{\infty}(f)\right\|_{e}\leq\frac{1}{1-l}\left\|f-A(f)\right\|_{e},\forall f\in A^{k}(X);

    • (5)

      AA is ψ\psi-WPO on (X,e)(X,\left\|\cdot\right\|_{e}) with ψ(t)=t1l,t+.\psi(t)=\frac{t}{1-l},\ t\in\mathbb{R}_{+}.

Proof.
  • (a),(b)

    By Lemma 2.1 it is sufficient to prove that A|Ak(X0)A|_{A^{k}(X_{0})} is Picard operator. Let fAk(X0)f\in A^{k}(X_{0}). Since ee is an order unit for Ak(X0)A^{k}(X_{0}) we have that:

    |f|λ(f)e.\left|f\right|\leq\lambda(f)e\text{.}

    But AA is a non-decreasing linear operator and we have that

    0|An(f)|An(|f|)λ(f)Ane0 as n,0\leq\left|A^{n}(f)\right|\leq A^{n}(\left|f\right|)\leq\lambda(f)A^{n}e\rightarrow 0\text{ as n}\rightarrow\infty,

    i.e., A|Ak(X0)A|_{A^{k}(X_{0})} is a Picard operator.

  • (c)

    (1) We have

    |A(f)|\displaystyle\left|A(f)\right| A(|f|)feA(e)fele\displaystyle\leq A(\left|f\right|)\leq\left\|f\right\|_{e}A(e)\leq\left\|f\right\|_{e}le
    =lfee\displaystyle=l\left\|f\right\|_{e}e
    A(f)AffeA(e)fele,\left\|A(f)\right\|\leq\left\|A\right\|\left\|f\right\|\leq\left\|f\right\|_{e}A(e)\leq\left\|f\right\|_{e}le,

    whence it follows

    A(f)elfe,fAk(X0);\left\|A(f)\right\|_{e}\leq l\left\|f\right\|_{e},\ \forall f\in A^{k}(X_{0});

    (2) We have

    |fg|fgee\left|f-g\right|\leq\left\|f-g\right\|_{e}e
    |A(fg)|\displaystyle\left|A(f-g)\right| A(|fg|)fgeA(e)fgele\displaystyle\leq A(\left|f-g\right|)\leq\left\|f-g\right\|_{e}A(e)\leq\left\|f-g\right\|_{e}le
    =lfgee,\displaystyle=l\left\|f-g\right\|_{e}e,

    so it follows

    A(fg)elfge,f,gAk(Xλ),λ;\left\|A(f-g)\right\|_{e}\leq l\left\|f-g\right\|_{e},\ \forall f,g\in A^{k}(X_{\lambda}),\ \lambda\in\mathbb{R};

    (3) We have

    |fA(f)|fA(f)ee\left|f-A(f)\right|\leq\left\|f-A(f)\right\|_{e}e
    |A(fA(f))|\displaystyle\left|A(f-A(f))\right| A(|fA(f)|)fA(f)eA(e)fA(f)ele\displaystyle\leq A(\left|f-A(f)\right|)\leq\left\|f-A(f)\right\|_{e}A(e)\leq\left\|f-A(f)\right\|_{e}le
    =lfA(f)ee,\displaystyle=l\left\|f-A(f)\right\|_{e}e,

    whence we obtain

    A(f)A2(f)elfA(f)e,fAk(Xλ),λ;\left\|A(f)-A^{2}(f)\right\|_{e}\leq l\left\|f-A(f)\right\|_{e},\ \forall f\in A^{k}(X_{\lambda}),\ \lambda\in\mathbb{R};

    (4) By Theorem 3.2, (b) we get the result.

    (5) By (4) and Definition 2.3 we get the result.

4. Applications

Example 4.1.

Let Ω=([0,[)p,p1,X:=CB(Ω),ϕ:X,ϕ(f):=f(0)\Omega=([0,\infty[)^{p},\ p\geq 1,\ X:=C_{B}(\Omega),\ \phi\colon X\rightarrow\mathbb{R},\ \phi(f):=f(0) and Ak:XX,k=1,m¯A_{k}\colon X\rightarrow X,k=\overline{1,m} a linear operator such that

  • Ak(1~)=1~,k=1,m¯;A_{k}(\widetilde{1})=\widetilde{1},\ k=\overline{1,m};

  • (Ak(f))(0)=f(0),fX,k=1,m¯.(A_{k}(f))(0)=f(0),\ \forall f\in X,\ k=\overline{1,m}.

Let X=λXλX=\underset{\lambda\in\mathbb{R}}{\cup}X_{\lambda} be the linear partition corresponding to ϕ\phi.

Let ck{0},k=1,m¯c_{k}\in\mathbb{R}\setminus\{0\},k=\overline{1,m} be such that

  • c1++cm=0c_{1}+\cdots+c_{m}=0

  • |c1|++|cm|=l<1.\left|c_{1}\right|+\cdots+\left|c_{m}\right|=l<1.

Let A:XXA\colon X\rightarrow X be defined by A(f):=f(0)~+k=1mckAk(f)A(f):=\widetilde{f(0)}+\sum\limits_{k=1}^{m}c_{k}A_{k}(f). We remark that ϕ\phi is an invariant functional for A.A.

Now we suppose that: Ak|X01\left\|A_{k}|_{X_{0}}\right\|\leq 1. Then, from Theorem 3.2, we have:

  • (i)

    AA is WPO;

  • (ii)

    FA={λ~|λ};F_{A}=\{\widetilde{\lambda}|\ \lambda\in\mathbb{R}\};

  • (iii)

    FAXλ={λ~};F_{A}\cap X_{\lambda}=\{\widetilde{\lambda}\};

  • (iv)

    A(f)=f(0),fXA^{\infty}(f)=f(0),\forall f\in X;

  • (v)

    fA(f)11lfA(f),fX\left\|f-A^{\infty}(f)\right\|\leq\frac{1}{1-l}\left\|f-A(f)\right\|,\forall f\in X;

Example 4.2.

Let α,β\alpha,\beta\in\mathbb{R}, 0α<β.0\leq\alpha<\beta. We consider the Stancu operator Sm,α,β:C([0,1]×[0,1])C([0,1]×[0,1])S_{m,\alpha,\beta}\colon C([0,1]\times[0,1])\rightarrow C([0,1]\times[0,1]) defined by (see, e.g., [1], [4], [16])

(Sm,α,βf)(x,y)=i=0mj=0m(mi)(mj)xiyj(1x)mi(1y)mjf(i+αm+β,j+αm+β).(S_{m,\alpha,\beta}f)(x,y)=\sum_{i=0}^{m}\sum_{j=0}^{m}\binom{m}{i}\binom{m}{j}x^{i}y^{j}(1-x)^{m-i}(1-y)^{m-j}f\left(\frac{i+\alpha}{m+\beta},\frac{j+\alpha}{m+\beta}\right).

We remark that the operator Sm,α,βS_{m,\alpha,\beta} satisfies the conditions of Theorem 3.3. By this theorem we have the following properties:

  • (a)

    the operator Sm,α,βS_{m,\alpha,\beta}\ is WPO;WPO;

  • (b)

    Sm,α,β(f)=i=0mj=0mcijf(i+αm+β,j+αm+β),S_{m,\alpha,\beta}^{\infty}(f)=\sum\limits_{i=0}^{m}\sum\limits_{j=0}^{m}c_{ij}^{\ast}f\left(\frac{i+\alpha}{m+\beta},\frac{j+\alpha}{m+\beta}\right), where cijc_{ij}^{\ast} are the unique solutions in KK of the following system

    (4.3) i=0mj=0m(mi)(mj)(i+αm+β)k(1i+αm+β)mk(j+αm+β)l(1j+αm+β)mlcij=ck,l,\sum_{i=0}^{m}\sum_{j=0}^{m}\tbinom{m}{i}\tbinom{m}{j}\left(\tfrac{i+\alpha}{m+\beta}\right)^{k}\left(1-\tfrac{i+\alpha}{m+\beta}\right)^{m-k}\left(\tfrac{j+\alpha}{m+\beta}\right)^{l}\left(1-\tfrac{j+\alpha}{m+\beta}\right)^{m-l}c_{ij}=c_{k,l},

       for k,l=0,m¯.k,l=\overline{0,m}.

For example, for m=1m=1 the system (4.3) implies:

{((1+βα)2(1+β)2)c00+(1+βα)(βα)c01+(βα)(1+βα)c10+(βα)2c11=0(1+βα)αc00+((1+βα)(1+α)(1+β)2)c01+(βα)αc10+(βα)(1+α)c11=0α(1+βα)c00+α(βα)c01+((1+α)(1+βα)(1+β)2)c10+(1+α)(βα)c11=0α2c00+α(1+α)c01+α(1+α)c10+((1+α)2(1+β)2)c11=0c00+c01+c10+c11=1\left\{\begin{array}[c]{l}((1+\beta-\alpha)^{2}-(1+\beta)^{2})c_{00}+(1+\beta-\alpha)(\beta-\alpha)c_{01}+(\beta-\alpha)(1+\beta-\alpha)c_{10}\\ +(\beta-\alpha)^{2}c_{11}=0\\ (1+\beta-\alpha)\alpha c_{00}+((1+\beta-\alpha)(1+\alpha)-(1+\beta)^{2})c_{01}+(\beta-\alpha)\alpha c_{10}\\ +(\beta-\alpha)(1+\alpha)c_{11}=0\\ \alpha(1+\beta-\alpha)c_{00}+\alpha(\beta-\alpha)c_{01}+((1+\alpha)(1+\beta-\alpha)-(1+\beta)^{2})c_{10}\\ +(1+\alpha)(\beta-\alpha)c_{11}=0\\ \alpha^{2}c_{00}+\alpha(1+\alpha)c_{01}+\alpha(1+\alpha)c_{10}+((1+\alpha)^{2}-(1+\beta)^{2})c_{11}=0\\ c_{00}+c_{01}+c_{10}+c_{11}=1\end{array}\right.

and we get

S1,α,β(f)\displaystyle S_{1,\alpha,\beta}^{\infty}(f) =(αβ)2β2f(α1+β,α1+β)α(αβ)β2f(α1+β,1+α1+β)\displaystyle=\frac{(\alpha-\beta)^{2}}{\beta^{2}}f\left(\frac{\alpha}{1+\beta},\frac{\alpha}{1+\beta}\right)-\frac{\alpha(\alpha-\beta)}{\beta^{2}}f\left(\frac{\alpha}{1+\beta},\frac{1+\alpha}{1+\beta}\right)
α(αβ)β2f(1+α1+β,α1+β)+α2β2f(1+α1+β,1+α1+β).\displaystyle\quad-\frac{\alpha(\alpha-\beta)}{\beta^{2}}f\left(\frac{1+\alpha}{1+\beta},\frac{\alpha}{1+\beta}\right)+\frac{\alpha^{2}}{\beta^{2}}f\left(\frac{1+\alpha}{1+\beta},\frac{1+\alpha}{1+\beta}\right).

Particular cases. For α=0\alpha=0, β>0\beta>0 we have S1,α,β(f)=f(0,0)S_{1,\alpha,\beta}^{\infty}(f)=f\left(0,0\right).

References

  • [1] Agratini, O., Approximation by linear operators, Cluj University Press, 2001 (in Romanian).
  • [2] Agratini, O. and Rus, I.A., Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Caroline 44 (2003), 555-563.
  • [3] Agratini, O. and Rus, I.A., Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum 8(2) (2003), 159-168.
  • [4] Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, 1994.
  • [5] Bohl, E., Linear operator equations on a partially ordered vector space, Aeq. Math. 4 (1970), fas. 1/2, 89-98.
  • [6] Cristescu, R., Ordered vector spaces and linear operators, Abacus Press, 1976.
  • [7] Gavrea, I. and Ivan, M., The iterates of positive linear operators preserving the constants, Appl. Math. Lett. 24 (2011), No. 12, 2068-2071.
  • [8] Gavrea, I. and Ivan, M., On the iterates of positive linear operators, J. Approx. Theory 163 (2011), No. 9, 1076-1079.
  • [9] Gonska, H., Piţul, P. and Raşa, I., Over-iterates of Bernstein-Stancu operators, Calcolo 44 (2007), 117-125.
  • [10] Heikkila, S. and Roach, G.F., On equivalent norms and the contraction mapping principle, Nonlinear Analysis, 8 (1984), No. 10, 1241-1252.
  • [11] Rus, I.A., Generalized contractions and applications, Cluj Univ. Press, 2001.
  • [12] Rus, I.A., Iterates of Stancu operators, via contraction principle, Studia Univ. Babeş–Bolyai Math. 47 (2002), No. 4, 101-104.
  • [13] Rus, I.A., Iterates of Stancu operators (via contraction principle) revisited, Fixed Point Theory 11 (2010), No. 2, 369-374.
  • [14] Rus, I.A., Fixed points and interpolation point set of a positive linear operator on C(D¯),C(\overline{D}), Studia Univ. Babeş-Bolyai, Math. 55 (2010), No. 4, 243-248.
  • [15] Rus, I.A., Heuristic introduction to weakly Picard operators theory, Creative Math. Inf. 23 (2014), No. 2, 243-252.
  • [16] Stancu, D.D., On some generalization of Bernstein polynomials, Studia Univ. Babeş-Bolyai Math. 14 (1969), No. 2, 31-45 (in Romanian).
2016

Related Posts