[1] C.D. Alecsa, S.C. Laszlo, T. Pinta, An extension of the second order dynamical system that models Nesterov’s convex gradient method, 2019,arxiv:1908.02574
[2] C.D. Alecsa, I. Boros, T. Pinta, New optimization algorithms for neural network training using operator splitting techniques, 2019, arxiv:1904.12952
[3] F. Alvarez, H. Attouch, J. Bolte, P. Redont, A second-order gradient like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics, J. Math. Pures Appl. 81 (2002), no. 8, pp. 747-779.
[4] H. Attouch, Z. Chbani, J. Fadili, H. Riahi, First-order optimization algorithms via inertial systems with Hessian driven damping, 2019, arxiv:1907.10536
[5] H. Attouch, A. Cabot, Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity, J. Differential Equations 263 (2017), pp. 5412-5458, doi:10.1016/j.jde.2017.06.024
[6] H. Attouch, A. Cabot, Convergence rates of inertial forward-backward algorithms, SIAM J. Optim (28) 2018, no.1, pp. 849-874, https://doi.org/10.1137/17M1114739
[7] H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative system, Commun. Contemp. Math. 2 (2000), pp. 1-34.
[8] H. Attouch, J. Peypouquet, P. Redont, Fast convex minimization via inertial dynamics with Hessian driven damping, J. Differential Equations 261 (2016), pp. 5734-5783.
[9] N. Bansal, A. Gupta, Potential-function proofs for gradient methods, Theory of Computing (2019), pp. 1-32.
[10] A. Batkai, P. Csomos, B. Farkas, G. Nickel, Operator splitting for non-autonomous evolution equations, J. Functional Analysis 260 (2011), pp. 2163-2190.
[11] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB, vol. 19, SIAM, 2014.
[12] S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. 45 (2008), pp. 89-145.
[13] R.I. Bot, R. Csetnek, S.C. Laszlo, A second order dynamical approach with variable damping to nonconvex smooth minimization, Applic. Analysis, 2018, doi:10.1080/00036811.2018.1495330
[14] A. Cabot, H. Engler, S. Gadat, On the long time behavior of second-order differential equations with asymptotically small dissipation, Trans. Amer. Math. Soc. 361 (2009), pp. 5983-6017.
[15] A. Cabot, H. Engler, S. Gadat, Second order differential equations with asymptotically small dissipation and piecewise flat potentials, Electron J. Differential Equations 17 (2009), pp. 33-38.
[16] C. Castera, J. Bolte, C. Fevotte, E. Pauwels, An inertial Newton algorithm for deep learning, 2019, arXiv:1905.12278.
[17] A. Chambolle, C. Dossal, On the convergence of the iterates of FISTA, HAL Id : hal-01060130, 2014, https://hal.inria.fr/hal-01060130v3https://hal.inria.fr/hal-01060130v3.
[18] L. Chen, H. Luo, First order optimization methods based on Hessian-driven Nesterov accelerated gradient flow, 2019, arxiv:1912.09276.
[19] A. Defazio, On the curved geometry of accelerated optimization, Adv. Neural Inf. Processing Syst. 33 (NIPS 2019), 2019.
[20] K. Feng, On difference schemes and symplectic geometry, Proceedings of the 5-th Intern. Symposium on differential geometry & differential equations, August 1984, Beijing (1985), pp. 42-58.
[21] G. Franca, D.P. Robinson, R. Vidal, Gradient flows and accelerated proximal splitting methods, 2019, arXiv:1908.00865.
[22] G. Franca, J. Sulam, D.P. Robinson, R. Vidal, Conformal symplectic and relativistic optimization, 2019, arXiv:1903.04100.
[23] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for ODE’s, second edition, Springer-Verlag Berlin Heidelberg, 2006, doi:10.1007/3-540-30666-8.
[24] E. Hairer, G. Wanner, Euler methods, explicit, implicit and symplectic. In : Encyclopedia of Applied and Computational Mathematics, B. Engquist ed., Springer, Berlin Heidelberg, 2015, pp. 451-455.
[25] E. Hansen, F. Kramer, A. Ostermann, A second-order positivity preserving scheme for semilinear parabolic problems, Appl. Num. Math. 62 (2012), pp. 1428-1435.
[26] E. Hansen, A. Ostermann, Exponential splitting for unbounded operators, Math. of Comput. 78 (2009), no. 267, pp. 1485-1496.
[27] S.C. Laszlo, Convergence rates for an inertial algorithm of gradient type associated to a smooth nonconvex minimization, 2018, arXiv:1807.00387.
[28] G. Marchuk, Some applications of splitting-up methods to the solution of mathematical physics problems, Aplikace Matematiky 13 (1968), pp. 103-132.
[29] M. Muehlebach, M.I. Jordan, A dynamical systems perspective on Nesterov acceleration, 2019, arXiv:1905.07436.
[30] Y. Nesterov, A method for solving a convex programming problem with convergence rate O(1/k 2 ) (in Russian), Soviet Math. Dokl. 27 (1983), no. 2, pp. 543-547.
[31] Y. Nesterov, Introductory lectures on convex optimization : A basic course, vol. 87 of Applied Optimization, Kluwer Academic Publishers, Boston, MA, 2004.
[32] N.C. Nguyen, P. Fernandez, R.M. Freund, J. Peraire, Accelerated residual methods for iterative solution of systems of equations, SIAM J. Sci. Computing 40 (2018), pp. A3157-A3179.
[33] M. Laborde, A.M. Oberman, A Lyapunov analysis for accelerated gradient methods : from deterministic to stochastic case, 2019, arXiv:1908.07861.
[34] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys. (4) 1964, pp. 1-17.
[35] J.M. Sanz-Serna, Symplectic methods. In : Encyclopedia of Applied and Computational Mathematics, B. Engquist ed., Springer, Berlin Heidelberg, 2015, pp. 1451-1458.
[36] B. Shi, S.S. Du, W.J. Su, M. I. Jordan, Acceleration via symplectic discretization of high-resolution differential equations, 2019, arXiv:1902.03694.
[37] B. Shi, S.S. Iyengar, A conservation law method based on optimization. In : Mathematical Theories of Machine Learning – Theory and Applications, Springer, Cham, 2019, pp. 63-85 https://doi.org/10.1007/978-3-030-17076-9_8.
[38] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), no. 3, pp. 506-517.
[39] W.J. Su, S. Boyd, E.J. Candes, A differential equation for modeling Nesterov’s accelerated gradient method : Theory and insights, J. Machine Learning Res. (17) 2016, pp. 1-43.
[40] T. Sun, P. Yin, D. Li, C. Huang, L. Guan, H. Jiang, Non-ergodic convergence analysis of heavy-ball algorithms, AAAI, 2019.
[41] H.F. Trotter, On the product of semi-groups of operators, Proc. Am. Math. Soc. 10 (1959), no. 4, pp. 545-551.
[42] P. Tseng, On accelerated proximal-gradient methods for convex-concave optimization, Manuscript, May 21 2018, mit.edu/~dimitrib/PTseng/papers/apgm.pdf.
[43] R. de Vogelaere, Methods of integration which preserve the contact transformation property of the Hamiltonian equations, Report no. 4, Dept. Math., Univ. of Notre Dame, Notre Dame, Ind., 1956.