Posts by Cristian Alecsa

Abstract


In this article, a study of the fixed point problem for Ciric type multi-valued operators is presented. More precisely,  some variants of Ciric’s contraction principle for multi-valued operators, as well as a strict fixed point principle for Ciric type multi- valued will be given.

Authors

 Adrian Petruşel
Department of Mathematics, Babeş-Bolyai University, Academy of Romanian Scientists Independenţei Street Cluj-Napoca,

Keywords

metric spaces; fixed point; Ciric type generalized contraction; multi-valued weakly Picard operator; data dependence;Ulam-Hyers stability; strict fixed point; Ostrowski property; topological properties

Paper coordinates

C.D. Alecsa and A. Petrusel, Some variants of Ciric’s multi-valued contraction principle, Analele Universitatii de Vest, Timisoara Seria Matematica –Informatica LVII, 1, (2019), pp. 23–42, https://doi.org/10.2478/awutm-2019-0004

PDF

??

About this paper

Journal

Analele Universitatii de Vest, Timisoara Seria Matematica –Informatica

Publisher Name
Print ISSN
Online ISSN

google scholar link

[1] J. Andres and L. G´orniewicz, On the Banach contraction principle for multivalued mappings, Approximation, Optimization and Mathematical Economics (M. Lassonde-ed.), Physica-Verlag, Heidelberg, (2001), 1-23
[2] Boriceanu M., Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. Univ.Babe¸s-Bolyai, 54 (3), (2009)
[3] L. Ciric, Fixed points for generalized multi-valued contractions, Mat. Vesnik., 9, (1972), 265–272
[4] N.V. Dung and A. Petru¸sel, On iterated functions systems consisting of Kannan maps, Reich maps, Chatterjea type maps, and related results, J. Fixed Point Theory
Appl., 9, (2017), 2271–2285
[5] G. Chifu and G. Petru¸sel, Fixed point results for multivalued Hardy-Rogers contractions in b-metric spaces, Filomat, 31 (8), (2017), 2499–2507
[6] A.A. Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Anal., 72, (2010), 132–134
[7] A.D. Rogers and G.E. Hardy, A generalization of fixed point theorem of Reich, Canad. Math. Bull., 16, (1973), 201–208
[8] N. Hussain, A.A. Harandi, and Y.J. Cho, Approximate endpoints for set-valued contractions in metric spaces, Fixed Point Theory Appl., 2010:614867, (2010), 1–13
[9] J.R. Jachymski, Caristi’s fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl., 227, (1998), 55–67
[10] T.A. Lazar, A. Petru¸sel, and N. Shahzad, Fixed points for non-self operators and domain invariance theorems, Nonlinear Anal., 70, (2009), 117–125
[11] T. Lazar, D. O’Regan, and A. Petru¸sel, Fixed points and homotopy results for
Ciric-type multivalued operators on a set with two metrics, ´ Bull. Korean Math. Soc., 45 (1), (2008), 67–73
[12] T. Lazar, G. Mot¸, G. Petru¸sel, and S. Szentesi, The theory of Reich’s fixed point theorem for multivalued operators, Fixed Point Theory Appl., 10, (2010)
[13] V.L. Lazar, Fixed point theory for multivalued ϕ-contractions, Fixed Point Theory Appl., 50, (2011)
[14] S.B. Nadler Jr, Multi-valued contraction mappings, Pacific J. Math., 30, (1969), 475–488
[15] T.P. Petru, A. Petru¸sel, and J.C. Yao, Ulam-Hyers stability of operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 15 (5), (2011), 2195–
2212
[16] A. Petrusel, Some variants of the contraction principle for multi-valued operators, generalizations and applications, to appear
[17] A. Petru¸sel, Ciric type fixed point theorems, Stud. Univ. Babes-Bolyai, 59 (2), (2014), 233–245
[18] A. Petru¸sel and I.A. Rus, The theory of a metric fixed point theorem for multivalued operators, Fixed Point Theory and its Applications, Proc. Ninth International
Conference on Fixed Point Theory and Applications, Changhua, Taiwan, (L.J. Lin, A. Petru¸sel, H.K. Xu – Eds.), Yokohama Publ., (2010), 161–175
[19] A. Petrusel, I.A. Rus, and J.C. Yao, Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 11 (3),
(2007), 903–914
[20] A. Petru¸sel and G. Petru¸sel, Selection theorems for multivalued generalized contractions, Math. Morav., 9, (2005), 43–52
[21] A. Petru¸sel, I.A. Rus, and M.A. Serban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued
operator, J. Nonlinear Convex Anal., 15 (3), (2014), 493–513
[22] B. Prasad and R. Sahni, Endpoints of multivalued contraction operators, ISRN Mathematical Anal., 2013, (2013), Article ID 542302, 7 pages
[23] J.S. Raymond, Multivalued contractions, Set-Valued Anal., 2, (1994), 559–571
[24] S. Reich, Fixed points of contractive functions, Boll. Un. Math. Ital., 4 (5), (1972), 26–42

Related Posts