Theory and computation of radial solutions for Neumann problems with φ-Laplacian

Abstract

The paper deals with existence, localization and multiplicity of radial positive solutions in the annulus or the ball, for the Neumann problem involving a general φ-Laplace operator. Our results apply in particular to the classical Laplacian and to the mean curvature operators in the Euclidean and Minkowski spaces. Numerical experiments with the MATLAB object-oriented package Chebfun are performed to obtain numerical solutions for some concrete equations.

Authors

Radu Precup
Institute of Advanced Studies in Science and Technology, Babeş-Bolyai, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Călin-Ioan Gheorghiu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Keywords

Neumann boundary value problem; φ-Laplace operator; Radial solution; Positive solution; Fixed point index; Harnack type inequality; Numerical solution

Paper coordinates

R. Precup, C.-I. Gheorghiu, Theory and computation of radial solutions for Neumann problems with φ-Laplacian, Qualitative Theory of Dynamical Systems, 23 (, art. no. 107, https://doi.org/10.1007/s12346-024-00963-8

PDF

About this paper

Journal

Qualitative Theory of Dynamical Systems

Publisher Name

Springer International Publishing

Print ISSN
1662-3592

 

Online ISSN

1575-5460

google scholar link

[1] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87, 131–152 (1982). https://doi.org/10.1007/BF01211061, Article ADS MathSciNet Google Scholar
[2] Benedikt, J., Girg, P., Kotrla, L., Takac, P.: Origin of the φ-Laplacian and A. Missbach. Electron. J. Differ. Equ. 2018(16), 1–17 (2018). http://ejde.math.txstate.edu or http://ejde.math.unt.edu
[3] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces. Math. Nachr. 283, 379–391 (2010). https://doi.org/10.1002/mana.200910083, Article MathSciNet Google Scholar
[4] Bonheure, D., Noris, B., Weth, T.: Increasing radial solutions for Neumann problems without growth restrictions. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 573–588 (2012). https://doi.org/10.1016/j.anihpc.2012.02.002, Article ADS MathSciNet Google Scholar
[5] Bonheure, D., Serra, E., Tilli, P.: Radial positive solutions of elliptic systems with Neumann boundary conditions. J. Funct. Anal. 265, 375–398 (2013). https://doi.org/10.1016/j.jfa.2013.05.027, Article MathSciNet Google Scholar
[6] Boscaggin, A., Colasuonno, F., Noris, B.: Multiple positive solutions for a class of φ-Laplacian Neumann problems without growth conditions. ESAIM Control Optim. Calc. Var. 24, 1625–1644 (2018). https://doi.org/10.1051/cocv/2017074, Article MathSciNet Google Scholar
[7] Boscaggin, A., Feltrin, G.: Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight. Nonlinear Anal. 196, 111807 (2020). https://doi.org/10.1016/j.na.2020.111807, Article MathSciNet Google Scholar
[8] Colasuonno, F., Noris, B.: Radial positive solutions for Laplacian supercritical Neumann problems. Bruno Pini Math. Anal. Semin. 8 (1), 55–72 (2017).
https://doi.org/10.6092/issn.2240-2829/7797,

[9] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985) Book Google Scholar
[10] Gheorghiu, C.I.: A third-order nonlinear BVP on the half-line, Chebfun (2020). https://www.chebfun.org/examples/ode-nonlin/GulfStream.html
[11] López-Gómez, J., Omari, P., Rivetti, S.: Positive solutions of a one-dimensional indefinite capillarity-type problem: a variational approach. J. Differ. Equ. 262, 2335–2392 (2017) Article ADS MathSciNet Google Scholar
[12] Ma, R., Chen, T., Wang, H.: Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions. J. Math. Anal. Appl. 443, 542–565 (2016). https://doi.org/10.1016/j.jmaa.2016.05.038, Article MathSciNet Google Scholar
[13] O’Regan, D., Wang, H.: Positive radial solutions for φ-Laplacian systems. Aequ. Math. 75, 43–50 (2008). https://doi.org/10.1007/s00010-007-2909-3 Article MathSciNet Google Scholar
[14] Precup, R.: Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems. J. Math. Anal. Appl. 352, 48–56 (2009). https://doi.org/10.1016/j.jmaa.2008.01.097, Article MathSciNet Google Scholar
[15] Precup, R., Pucci, P., Varga, C.: Energy-based localization and multiplicity of radially symmetric states for the stationary φ-Laplace diffusion. Complex Var. Ellipt. Equ. 65, 1198–1209 (2020). https://doi.org/10.1080/17476933.2019.1574774 Article MathSciNet Google Scholar
[16] Precup, R., Rodriguez-Lopez, J.: Positive radial solutions for Dirichlet problems via a Harnack type inequality Math. Meth. Appl. Sci. 46(2), 2972–2985 (2023). https://doi.org/10.1002/mma.8682
[17] Trefethen, L.N.: Computing numerically with functions instead of numbers. Math. Comput. Sci. 1, 9–19 (2007). https://doi.org/10.1007/s11786-007-0001-y Article MathSciNet Google Scholar
[18] Trefethen, L.N., Birkisson, A., Driscoll, T.A.: Exploring ODEs. SIAM, Philadelphia (2018) Google Scholar
[19] Wang, H.: On the existence of positive solutions for semilinear elliptic equations in the annulus. J. Differ. Equ. 109, 1–7 (1994). https://doi.org/10.1006/jdeq.1994.1042

Paper (preprint) in HTML form

Theory and computation of radial solutions for Neumann problems with ϕitalic-ϕ\phiitalic_ϕ-Laplacian

Radu Precup, Călin-Ioan Gheorghiu R. Precup, Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania & Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania C.-I. Gheorghiu, Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania
Abstract.

The paper deals with existence, localization and multiplicity of radial positive solutions in the annulus or the ball, for the Neumann problem involving a general ϕitalic-ϕ\phiitalic_ϕ-Laplace operator. Our results apply in particular to the mean curvature operator in the Minkowski space. Numerical experiments with the MATLAB object-oriented package Chebfun are performed to obtain numerical solutions for some concrete equations.

Key words and phrases:
Neumann boundary value problem, ϕitalic-ϕ\phiitalic_ϕ-Laplace operator, radial solution, positive solution, fixed point index, Harnack type inequality, numerical solution
1991 Mathematics Subject Classification:
35J65, 34B18, 65L10

1. Introduction

In this paper we are concerning with the existence and localization of radial positive solutions for the Neumann boundary value problem in the annulus or in the ball

(1.1) {div (ψ(|u|)u)+εu=f(|x|,u)in Ωνu=0on Ω,casesdiv 𝜓𝑢𝑢𝜀𝑢𝑓𝑥𝑢in Ωsubscript𝜈𝑢0on Ω\left\{\begin{array}[]{ll}-\text{div\ }\left(\psi\left(\left|\nabla u\right|% \right)\nabla u\right)+\varepsilon u=f\left(\left|x\right|,u\right)&\text{in }% \Omega\\ \partial_{\nu}u=0&\text{on }\partial\Omega,\end{array}\right.{ start_ARRAY start_ROW start_CELL - div ( italic_ψ ( | ∇ italic_u | ) ∇ italic_u ) + italic_ε italic_u = italic_f ( | italic_x | , italic_u ) end_CELL start_CELL in roman_Ω end_CELL end_ROW start_ROW start_CELL ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_u = 0 end_CELL start_CELL on ∂ roman_Ω , end_CELL end_ROW end_ARRAY

where  ε>0,𝜀0\varepsilon>0,italic_ε > 0 , ψ:(a,a)+:𝜓𝑎𝑎subscript\ \psi:\left(-a,a\right)\rightarrow\mathbb{R}_{+}\ italic_ψ : ( - italic_a , italic_a ) → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is such that the function

ϕ:(a,a)(b,b),ϕ(s)=sψ(s)(0<a,b+):italic-ϕformulae-sequence𝑎𝑎𝑏𝑏italic-ϕ𝑠𝑠𝜓𝑠formulae-sequence0𝑎𝑏\phi:\left(-a,a\right)\rightarrow\left(-b,b\right),\ \ \ \ \phi\left(s\right)=% s\psi\left(s\right)\ \ \ \ \ \left(0<a,b\leq+\infty\right)italic_ϕ : ( - italic_a , italic_a ) → ( - italic_b , italic_b ) , italic_ϕ ( italic_s ) = italic_s italic_ψ ( italic_s ) ( 0 < italic_a , italic_b ≤ + ∞ )

is an increasing homeomorphism, f:[R0,R]×++:𝑓subscript𝑅0𝑅subscriptsubscriptf:\left[R_{0},R\right]\times\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}italic_f : [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] × blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is continuous and Ω={xn:R0<|x|<R},n2.formulae-sequenceΩconditional-set𝑥superscript𝑛subscript𝑅0𝑥𝑅𝑛2\ \Omega=\{x\in\mathbb{R}^{n}:\ R_{0}<\left|x\right|<R\},\ n\geq 2.roman_Ω = { italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT : italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < | italic_x | < italic_R } , italic_n ≥ 2 . Here 0R0<R<+ 0subscript𝑅0𝑅\ 0\leq R_{0}<R<+\infty0 ≤ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_R < + ∞ and ν𝜈\nuitalic_ν is the the exterior unit normal vector to the boundary of Ω.Ω\Omega.roman_Ω .

Problems of type (1.1) arise from mathematical modeling of real processes. Thus, equations involving the p𝑝pitalic_p-Laplacian come from fluid mechanics in porous media [2], equations with a singular homeomorphism arise from the relativistic mechanics [1], and equations involving a bounded homeomorphism intervene in capillarity problems [11].

Looking for radial solutions of (1.1), that is, functions of the form u(x)=v(r)𝑢𝑥𝑣𝑟\ u(x)=v(r)italic_u ( italic_x ) = italic_v ( italic_r ) with r=|x|,𝑟𝑥\ r=\left|x\right|,italic_r = | italic_x | , problem (1.1) reduces to the boundary value problem

(1.2) {(rn1ϕ(v))+εrn1v=rn1f(r,v)in (R0,R)v(R0)=v(R)=0.casessuperscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣𝜀superscript𝑟𝑛1𝑣superscript𝑟𝑛1𝑓𝑟𝑣in subscript𝑅0𝑅superscript𝑣subscript𝑅0superscript𝑣𝑅0missing-subexpression\left\{\begin{array}[]{ll}-\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{% \prime}+\varepsilon r^{n-1}v=r^{n-1}f(r,v)&\text{in }\left(R_{0},R\right)\\ v^{\prime}\left(R_{0}\right)=v^{\prime}(R)=0.&\end{array}\right.{ start_ARRAY start_ROW start_CELL - ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_v = italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_f ( italic_r , italic_v ) end_CELL start_CELL in ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 . end_CELL start_CELL end_CELL end_ROW end_ARRAY

Note that in the case of the ball, when R0=0,subscript𝑅00R_{0}=0,italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 , the equality v(R)=0superscript𝑣𝑅0v^{\prime}(R)=0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 stands for the Neumann condition νu=0subscript𝜈𝑢0\ \partial_{\nu}u=0∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_u = 0 on the sphere, while the additional assumption v(0)=0superscript𝑣00\ v^{\prime}\left(0\right)=0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 0 ) = 0 is required as a consequence of the regularity of the radially symmetric solutions u.𝑢u.italic_u .

There are many contributions to radial solutions for boundary value problems in the annulus and in the ball. For instance, in papers [5], [12], [14] and [19] there is considered the case of equations and systems with the classical Laplacian, the papers [6], [8] and [13] deal with the p𝑝pitalic_p-Laplacian, and in [3], [7] and [16] it is considered the case of the ϕitalic-ϕ\phiitalic_ϕ-Laplacian, in particular, that of the mean curvature operators in the Euclidean and Minkowski spaces. The methods that are used are of the most spilled:  fixed point principles, topological degree, upper and lower solution techniques, variational methods and shooting method. Although the problem of radial solutions returns to ordinary differential equations, the presence of a singularity at the origin makes the study more difficult. The analysis is even more difficult with the Neumann problem due mainly to the absence of an explicit expression of the solution operator (the integral type inverse of the differential operator).

In this paper, to our knowledge, the first consecrated to the localization of radial solutions for the Neumann problem involving a general ϕitalic-ϕ\phiitalic_ϕ-Laplace operator, we use the homotopy technique - already applied in [15] and [16] for the Dirichlet problem - to obtain the existence of solutions v𝑣vitalic_v such that

β<min[R0,R]v,max[R0,R]v<α,formulae-sequence𝛽subscriptsubscript𝑅0𝑅𝑣subscriptsubscript𝑅0𝑅𝑣𝛼\beta<\min_{\left[R_{0},R\right]}v,\ \ \ \max_{\left[R_{0},R\right]}v<\alpha,italic_β < roman_min start_POSTSUBSCRIPT [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_v , roman_max start_POSTSUBSCRIPT [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_v < italic_α ,

for two given numbers 0<β<α.0𝛽𝛼0<\beta<\alpha.0 < italic_β < italic_α .

From a physical point of view, assuming that function v𝑣vitalic_v stands for the state of a process and f𝑓fitalic_f is the external source, such a localization is imposed by two requirements: First, from the necessity to find the state-depending source f(r,v)𝑓𝑟𝑣f\left(r,v\right)italic_f ( italic_r , italic_v ) (feedback law) in order to guarantee that the state v𝑣vitalic_v remains bounded between two given bounds and secondly, the state-depending source f𝑓fitalic_f being given, to find the bounds of its corresponding state v.𝑣v.italic_v .

Mathematically, such a localization immediately gives multiple solutions in the case of oscillating functions f(r,s).𝑓𝑟𝑠f\left(r,s\right).italic_f ( italic_r , italic_s ) . Additionally, we show that the solutions v𝑣vitalic_v are decreasing on [R0,R]subscript𝑅0𝑅\left[R_{0},R\right][ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] provided that f(r,s)𝑓𝑟𝑠f\left(r,s\right)italic_f ( italic_r , italic_s ) has suitable monotonicity properties in r𝑟ritalic_r and s.𝑠s.italic_s . Also, a certain behavior of the decreasing solution is emphasized in terms of a Harnack type inequality which is established by a variable change meant to eliminate the first-order term of the differential operator. Our results apply particularly to the singular homeomorphisms

ϕ:(a,a),ϕ(s)=sa2s2 (here a<+,b=+),:italic-ϕformulae-sequence𝑎𝑎italic-ϕ𝑠𝑠superscript𝑎2superscript𝑠2 formulae-sequencehere 𝑎𝑏\phi:\left(-a,a\right)\rightarrow\mathbb{R},\ \ \phi\left(s\right)=\frac{s}{% \sqrt{a^{2}-s^{2}}}\ \ \ \ \ \text{ }(\text{here \ }a<+\infty,\ b=+\infty),italic_ϕ : ( - italic_a , italic_a ) → blackboard_R , italic_ϕ ( italic_s ) = divide start_ARG italic_s end_ARG start_ARG square-root start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG ( here italic_a < + ∞ , italic_b = + ∞ ) ,

as in the mean curvature operator in the Minkowski space.

2. Solution properties

By a solution of (1.2) we mean a function vC1[R0,R]𝑣superscript𝐶1subscript𝑅0𝑅v\in C^{1}\left[R_{0},R\right]italic_v ∈ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] such that v(a,a)superscript𝑣𝑎𝑎\ v^{\prime}\in\left(-a,a\right)\ italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ ( - italic_a , italic_a )and rn1ϕ(v)superscript𝑟𝑛1italic-ϕsuperscript𝑣\ r^{n-1}\phi\left(v^{\prime}\right)italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is differentiable and satisfies (1.2).

We look for solutions which are nonnegative on [R0,R].subscript𝑅0𝑅\left[R_{0},R\right].[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] .

First, in this section, we consider the case of external influence terms that do not depend on the state variable, namely the problem

(2.1) {L(v)(r):=(rn1ϕ(v))+εrn1v=rn1h(r)in (R0,R)v(R0)=v(R)=0casesassign𝐿𝑣𝑟superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣𝜀superscript𝑟𝑛1𝑣superscript𝑟𝑛1𝑟in subscript𝑅0𝑅superscript𝑣subscript𝑅0superscript𝑣𝑅0missing-subexpression\left\{\begin{array}[]{ll}L\left(v\right)\left(r\right):=-\left(r^{n-1}\phi% \left(v^{\prime}\right)\right)^{\prime}+\varepsilon r^{n-1}v=r^{n-1}h\left(r% \right)&\text{in }\left(R_{0},R\right)\\ v^{\prime}\left(R_{0}\right)=v^{\prime}(R)=0&\end{array}\right.{ start_ARRAY start_ROW start_CELL italic_L ( italic_v ) ( italic_r ) := - ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_v = italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_h ( italic_r ) end_CELL start_CELL in ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 end_CELL start_CELL end_CELL end_ROW end_ARRAY

for a given function hC[R0,R].𝐶subscript𝑅0𝑅h\in C\left[R_{0},R\right].italic_h ∈ italic_C [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] .

2.1. Some basic properties

The next lemma gives a characterization of the solutions.

Lemma 2.1.

A function v𝑣vitalic_v is a solution of (2.1) if and only if vC[R0,R]𝑣𝐶subscript𝑅0𝑅v\in C\left[R_{0},R\right]italic_v ∈ italic_C [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] and the following two conditions hold:

(2.2) v(r)=v(R0)+R0rϕ1(s1nsRτn1(hεv)𝑑τ)𝑑s(r[R0,R]);𝑣𝑟𝑣subscript𝑅0superscriptsubscriptsubscript𝑅0𝑟superscriptitalic-ϕ1superscript𝑠1𝑛superscriptsubscript𝑠𝑅superscript𝜏𝑛1𝜀𝑣differential-d𝜏differential-d𝑠𝑟subscript𝑅0𝑅v\left(r\right)=v\left(R_{0}\right)+\int_{R_{0}}^{r}\phi^{-1}\left(s^{1-n}\int% _{s}^{R}\tau^{n-1}\left(h-\varepsilon v\right)d\tau\right)ds\ \ \ \ (r\in\left% [R_{0},R\right]);italic_v ( italic_r ) = italic_v ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + ∫ start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_s start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_h - italic_ε italic_v ) italic_d italic_τ ) italic_d italic_s ( italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] ) ;
(2.3) R0Rτn1(hεv)𝑑τ=0.superscriptsubscriptsubscript𝑅0𝑅superscript𝜏𝑛1𝜀𝑣differential-d𝜏0\int_{R_{0}}^{R}\tau^{n-1}\left(h-\varepsilon v\right)d\tau=0.∫ start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_h - italic_ε italic_v ) italic_d italic_τ = 0 .
Proof.

Let v𝑣vitalic_v be a solution of (2.1). Then integrating from r𝑟ritalic_r to R𝑅Ritalic_R by taking into account that v(R)=0superscript𝑣𝑅0v^{\prime}\left(R\right)=0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 gives

rn1ϕ(v)=rRτn1(hεv)𝑑τ.superscript𝑟𝑛1italic-ϕsuperscript𝑣superscriptsubscript𝑟𝑅superscript𝜏𝑛1𝜀𝑣differential-d𝜏r^{n-1}\phi\left(v^{\prime}\right)=\int_{r}^{R}\tau^{n-1}\left(h-\varepsilon v% \right)d\tau.italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ∫ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_h - italic_ε italic_v ) italic_d italic_τ .

which immediately implies (2.2). Next (2.3) is obtained by integration in (2.1) on [R0,R]subscript𝑅0𝑅\left[R_{0},R\right][ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] and using v(R0)=v(R)=0.superscript𝑣subscript𝑅0superscript𝑣𝑅0v^{\prime}\left(R_{0}\right)=v^{\prime}(R)=0.italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 .

Conversely, if v𝑣vitalic_v satisfies (2.2) and (2.3), then clearly vC1(R0,R)𝑣superscript𝐶1subscript𝑅0𝑅v\in C^{1}\left(R_{0},R\right)italic_v ∈ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) and by direct computation using (2.3),

v(r)superscript𝑣𝑟\displaystyle v^{\prime}\left(r\right)italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) =\displaystyle== ϕ1(r1nrRτn1(hεv)𝑑τ)superscriptitalic-ϕ1superscript𝑟1𝑛superscriptsubscript𝑟𝑅superscript𝜏𝑛1𝜀𝑣differential-d𝜏\displaystyle\phi^{-1}\left(r^{1-n}\int_{r}^{R}\tau^{n-1}\left(h-\varepsilon v% \right)d\tau\right)italic_ϕ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_h - italic_ε italic_v ) italic_d italic_τ )
=\displaystyle== ϕ1(r1nR0rτn1(hεv)𝑑τ),superscriptitalic-ϕ1superscript𝑟1𝑛superscriptsubscriptsubscript𝑅0𝑟superscript𝜏𝑛1𝜀𝑣differential-d𝜏\displaystyle-\phi^{-1}\left(r^{1-n}\int_{R_{0}}^{r}\tau^{n-1}\left(h-% \varepsilon v\right)d\tau\right),- italic_ϕ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_h - italic_ε italic_v ) italic_d italic_τ ) ,

whence v(R)=v(R0)=0.superscript𝑣𝑅superscript𝑣subscript𝑅00v^{\prime}\left(R\right)=v^{\prime}\left(R_{0}\right)=0.italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0 . Moreover,

(2.5) ϕ(v)=r1nrRτn1(hεv)𝑑τ,italic-ϕsuperscript𝑣superscript𝑟1𝑛superscriptsubscript𝑟𝑅superscript𝜏𝑛1𝜀𝑣differential-d𝜏\phi\left(v^{\prime}\right)=r^{1-n}\int_{r}^{R}\tau^{n-1}\left(h-\varepsilon v% \right)d\tau,italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_h - italic_ε italic_v ) italic_d italic_τ ,

which shows that ϕ(v)italic-ϕsuperscript𝑣\phi\left(v^{\prime}\right)italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is differentiable and yields

(rn1ϕ(v))=rn1(hεv) in (R0,R). formulae-sequencesuperscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣superscript𝑟𝑛1𝜀𝑣 in subscript𝑅0𝑅 -\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}=r^{n-1}\left(h-% \varepsilon v\right)\ \ \ \text{ in }\left(R_{0},R\right).\text{ }- ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_h - italic_ε italic_v ) in ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) .

Thus, v𝑣vitalic_v is a solution of (2.1). ∎

Lemma 2.2.

Let h1,h2C[R0,R],subscript1subscript2𝐶subscript𝑅0𝑅h_{1},h_{2}\in C\left[R_{0},R\right],italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_C [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , h1h2subscript1subscript2h_{1}\leq h_{2}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT on [R0,R],subscript𝑅0𝑅\left[R_{0},R\right],[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , and let v1,v2C1[R0,R]subscript𝑣1subscript𝑣2superscript𝐶1subscript𝑅0𝑅v_{1},v_{2}\in C^{1}\left[R_{0},R\right]italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] be such that for i=1,2,𝑖12i=1,2,italic_i = 1 , 2 , one has vi(R0)=vi(R)=0superscriptsubscript𝑣𝑖subscript𝑅0superscriptsubscript𝑣𝑖𝑅0\ v_{i}^{\prime}\left(R_{0}\right)=v_{i}^{\prime}\left(R\right)=0italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 and

L(vi)(r)=rn1hi(r)for r(R0,R).formulae-sequence𝐿subscript𝑣𝑖𝑟superscript𝑟𝑛1subscript𝑖𝑟for 𝑟subscript𝑅0𝑅L\left(v_{i}\right)\left(r\right)=r^{n-1}h_{i}\left(r\right)\ \ \ \text{for }r% \in\left(R_{0},R\right).italic_L ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ( italic_r ) = italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_r ) for italic_r ∈ ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) .

Then v1v2subscript𝑣1subscript𝑣2\ v_{1}\leq v_{2}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT in [R0,R].subscript𝑅0𝑅\left[R_{0},R\right].[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] .

For each hC[R0,R],𝐶subscript𝑅0𝑅\ h\in C\left[R_{0},R\right],italic_h ∈ italic_C [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , problem (2.1) has at most one solution which is nonnegative if h0.0h\geq 0.italic_h ≥ 0 . Moreover, h/ε𝜀h/\varepsilonitalic_h / italic_ε is the unique solution for any constant h.h.italic_h .

Proof.

Assume the contrary. Let I=(α,β)𝐼𝛼𝛽I=\left(\alpha,\beta\right)italic_I = ( italic_α , italic_β ) be a maximal subinterval of (R0,R)subscript𝑅0𝑅\left(R_{0},R\right)( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) on which v2v1subscript𝑣2subscript𝑣1v_{2}-v_{1}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is strictly negative. On I𝐼Iitalic_I we then have

(rn1(ϕ(v2)ϕ(v1)))=rn1(h2h1)εrn1(v2v1)>0.superscriptsuperscript𝑟𝑛1italic-ϕsuperscriptsubscript𝑣2italic-ϕsuperscriptsubscript𝑣1superscript𝑟𝑛1subscript2subscript1𝜀superscript𝑟𝑛1subscript𝑣2subscript𝑣10-\left(r^{n-1}\left(\phi\left(v_{2}^{\prime}\right)-\phi\left(v_{1}^{\prime}% \right)\right)\right)^{\prime}=r^{n-1}\left(h_{2}-h_{1}\right)-\varepsilon r^{% n-1}\left(v_{2}-v_{1}\right)>0.- ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_ϕ ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_ϕ ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) > 0 .

Hence the function

ϝ(r):=rn1(ϕ(v2(r))ϕ(v1(r)))assignitalic-ϝ𝑟superscript𝑟𝑛1italic-ϕsuperscriptsubscript𝑣2𝑟italic-ϕsuperscriptsubscript𝑣1𝑟\digamma\left(r\right):=r^{n-1}\left(\phi\left(v_{2}^{\prime}\left(r\right)% \right)-\phi\left(v_{1}^{\prime}\left(r\right)\right)\right)italic_ϝ ( italic_r ) := italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ( italic_ϕ ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) ) - italic_ϕ ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) ) )

is strictly decreasing on I.𝐼I.italic_I .

Assume β=R.𝛽𝑅\beta=R.italic_β = italic_R . Since vi(R)=0superscriptsubscript𝑣𝑖𝑅0v_{i}^{\prime}(R)=0italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 for both i=1,2,𝑖12i=1,2,italic_i = 1 , 2 , we must have ϕ(v2(r))ϕ(v1(r))>0,italic-ϕsuperscriptsubscript𝑣2𝑟italic-ϕsuperscriptsubscript𝑣1𝑟0\ \phi\left(v_{2}^{\prime}\left(r\right)\right)-\phi\left(v_{1}^{\prime}\left(% r\right)\right)>0,italic_ϕ ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) ) - italic_ϕ ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) ) > 0 , whence v2(r)v1(r)>0superscriptsubscript𝑣2𝑟superscriptsubscript𝑣1𝑟0\ v_{2}^{\prime}\left(r\right)-v_{1}^{\prime}\left(r\right)>0italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) > 0 for rI.𝑟𝐼r\in I.italic_r ∈ italic_I . This shows that the function v2v1subscript𝑣2subscript𝑣1\ v_{2}-v_{1}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is strictly increasing on I.𝐼I.italic_I . This together with its negativity implies that v2v1subscript𝑣2subscript𝑣1\ v_{2}-v_{1}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is negative on the whole interval [R0,R).subscript𝑅0𝑅[R_{0},R).[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) . Hence α=R0𝛼subscript𝑅0\alpha=R_{0}italic_α = italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and consequently ϝitalic-ϝ\digammaitalic_ϝ is strictly decreasing on [R0,R],subscript𝑅0𝑅\left[R_{0},R\right],[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , which is impossible since its values at R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and R𝑅Ritalic_R are equal to zero. Thus β<R𝛽𝑅\beta<Ritalic_β < italic_R and v2(β)v1(β)=0.subscript𝑣2𝛽subscript𝑣1𝛽0v_{2}\left(\beta\right)-v_{1}\left(\beta\right)=0.italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_β ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_β ) = 0 .

Assume α=R0.𝛼subscript𝑅0\alpha=R_{0}.italic_α = italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . Since vi(R0)=0superscriptsubscript𝑣𝑖subscript𝑅00v_{i}^{\prime}(R_{0})=0italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0 for both i=1,2,𝑖12i=1,2,italic_i = 1 , 2 , we have ϕ(v2(r))ϕ(v1(r))<0,italic-ϕsuperscriptsubscript𝑣2𝑟italic-ϕsuperscriptsubscript𝑣1𝑟0\phi\left(v_{2}^{\prime}\left(r\right)\right)-\phi\left(v_{1}^{\prime}\left(r% \right)\right)<0,italic_ϕ ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) ) - italic_ϕ ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) ) < 0 , whence v2(r)v1(r)<0superscriptsubscript𝑣2𝑟superscriptsubscript𝑣1𝑟0\ v_{2}^{\prime}\left(r\right)-v_{1}^{\prime}\left(r\right)<0\ italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) < 0 for rI.𝑟𝐼\ r\in I.italic_r ∈ italic_I . But this is impossible in virtue of v2(β)v1(β)=0subscript𝑣2𝛽subscript𝑣1𝛽0v_{2}\left(\beta\right)-v_{1}\left(\beta\right)=0italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_β ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_β ) = 0 and the negativity of v2v1subscript𝑣2subscript𝑣1\ v_{2}-v_{1}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT on I.𝐼I.italic_I . Therefore R0<α<β<Rsubscript𝑅0𝛼𝛽𝑅R_{0}<\alpha<\beta<Ritalic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_α < italic_β < italic_R and v2(α)v1(α)=0,v2(β)v1(β)=0.formulae-sequencesubscript𝑣2𝛼subscript𝑣1𝛼0subscript𝑣2𝛽subscript𝑣1𝛽0\ v_{2}\left(\alpha\right)-v_{1}\left(\alpha\right)=0,\ v_{2}\left(\beta\right% )-v_{1}\left(\beta\right)=0.italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_α ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_α ) = 0 , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_β ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_β ) = 0 . Let r0(α,β)subscript𝑟0𝛼𝛽\ r_{0}\in\left(\alpha,\beta\right)italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ ( italic_α , italic_β ) be such that v2(r0)v1(r0)=minr[α,β](v2(r)v1(r)).subscript𝑣2subscript𝑟0subscript𝑣1subscript𝑟0subscript𝑟𝛼𝛽subscript𝑣2𝑟subscript𝑣1𝑟\ v_{2}\left(r_{0}\right)-v_{1}\left(r_{0}\right)=\min_{r\in\left[\alpha,\beta% \right]}\left(v_{2}\left(r\right)-v_{1}\left(r\right)\right).italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = roman_min start_POSTSUBSCRIPT italic_r ∈ [ italic_α , italic_β ] end_POSTSUBSCRIPT ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r ) ) . Then ϝ(r0)=0italic-ϝsubscript𝑟00\digamma\left(r_{0}\right)=0italic_ϝ ( italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0 and since ϝitalic-ϝ\digammaitalic_ϝ is decreasing we must have ϝ(r)>0italic-ϝ𝑟0\digamma\left(r\right)>0italic_ϝ ( italic_r ) > 0 on (α,r0)𝛼subscript𝑟0\left(\alpha,r_{0}\right)( italic_α , italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and ϝ(r)<0italic-ϝ𝑟0\digamma\left(r\right)<0italic_ϝ ( italic_r ) < 0 on (r0,β).subscript𝑟0𝛽\left(r_{0},\beta\right).( italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_β ) . Consequently, the function v2v1subscript𝑣2subscript𝑣1v_{2}-v_{1}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT should be increasing on (α,r0)𝛼subscript𝑟0\left(\alpha,r_{0}\right)( italic_α , italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), which is impossible since v2(α)v1(α)=0subscript𝑣2𝛼subscript𝑣1𝛼0v_{2}\left(\alpha\right)-v_{1}\left(\alpha\right)=0italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_α ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_α ) = 0 and v2(r0)v1(r0)<0.subscript𝑣2subscript𝑟0subscript𝑣1subscript𝑟00v_{2}\left(r_{0}\right)-v_{1}\left(r_{0}\right)<0.italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) < 0 .

Therefore, v1v2subscript𝑣1subscript𝑣2v_{1}\leq v_{2}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT on [R0,R]subscript𝑅0𝑅\left[R_{0},R\right][ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] as desired.

Let v1,v2subscript𝑣1subscript𝑣2v_{1},v_{2}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT solve (2.1) for the same function h.h.italic_h . Applying the previous conclusion to h1=h2=hsubscript1subscript2h_{1}=h_{2}=hitalic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_h gives v1v2subscript𝑣1subscript𝑣2v_{1}\leq v_{2}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and v2v1.subscript𝑣2subscript𝑣1v_{2}\leq v_{1}.italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≤ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . Thus v1=v2subscript𝑣1subscript𝑣2v_{1}=v_{2}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT proving the uniqueness. The fact that v=h/ε𝑣𝜀v=h/\varepsilon\ italic_v = italic_h / italic_ε for any constant function hhitalic_h follows directly from (2.1). Finally the property that the solution v𝑣\ vitalic_v is nonnegative if hhitalic_h is nonnegative follows from the comparison property and the fact that zero solves the problem for h=0.0h=0.italic_h = 0 .

Lemma 2.3.

If v𝑣vitalic_v solves the problem for a decreasing function hC[R0,R],𝐶subscript𝑅0𝑅h\in C\left[R_{0},R\right],italic_h ∈ italic_C [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , then v𝑣vitalic_v is decreasing in [R0,R]subscript𝑅0𝑅\left[R_{0},R\right][ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] too.

Proof.

Assume otherwise. Then there is a maximal subinterval [α,β]𝛼𝛽\left[\alpha,\beta\right][ italic_α , italic_β ] of [R0,R]subscript𝑅0𝑅\left[R_{0},R\right][ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] on which v:=S(h)assign𝑣𝑆v:=S\left(h\right)italic_v := italic_S ( italic_h ) is strictly increasing. If α𝛼\alphaitalic_α is interior, i.e., α>R0,𝛼subscript𝑅0\alpha>R_{0},italic_α > italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , then clearly v(α)=0.superscript𝑣𝛼0v^{\prime}\left(\alpha\right)=0.italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α ) = 0 . Otherwise α=R0𝛼subscript𝑅0\alpha=R_{0}italic_α = italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and v(α)=0superscript𝑣𝛼0v^{\prime}\left(\alpha\right)=0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α ) = 0 due to the Neumann condition. Similarly, v(β)=0.superscript𝑣𝛽0v^{\prime}\left(\beta\right)=0.italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) = 0 . The function hεv𝜀𝑣h-\varepsilon vitalic_h - italic_ε italic_v being decreasing on [α,β],𝛼𝛽\left[\alpha,\beta\right],[ italic_α , italic_β ] , one has that r1n(rn1ϕ(v))superscript𝑟1𝑛superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣\ r^{1-n}\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is increasing on (α,β).𝛼𝛽\left(\alpha,\beta\right).( italic_α , italic_β ) . Hence there are only two possibilities: either (a) (rn1ϕ(v))0superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣0\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}\geq 0( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≥ 0 on (α,β),𝛼𝛽\left(\alpha,\beta\right),( italic_α , italic_β ) , or (b) there is γ(α,β]𝛾𝛼𝛽\gamma\in(\alpha,\beta]italic_γ ∈ ( italic_α , italic_β ] such that (rn1ϕ(v))<0superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣0\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}<0( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < 0 in (α,γ)𝛼𝛾\left(\alpha,\gamma\right)( italic_α , italic_γ ) and (rn1ϕ(v))0superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣0\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}\geq 0( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≥ 0 in (γ,β).𝛾𝛽\left(\gamma,\beta\right).( italic_γ , italic_β ) .

In case (a), the monotonicity of r1n(rn1ϕ(v))superscript𝑟1𝑛superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣r^{1-n}\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT on (α,β)𝛼𝛽\left(\alpha,\beta\right)( italic_α , italic_β ) implies that (rn1ϕ(v))superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is increasing on (α,β),𝛼𝛽\left(\alpha,\beta\right),( italic_α , italic_β ) , which implies the convexity on (α,β)𝛼𝛽\left(\alpha,\beta\right)( italic_α , italic_β ) of the function rn1ϕ(v).superscript𝑟𝑛1italic-ϕsuperscript𝑣r^{n-1}\phi\left(v^{\prime}\right).italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) . Since this function vanishes at α𝛼\alphaitalic_α and β𝛽\betaitalic_β (like vsuperscript𝑣v^{\prime}italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT), we must have rn1ϕ(v)0superscript𝑟𝑛1italic-ϕsuperscript𝑣0r^{n-1}\phi\left(v^{\prime}\right)\leq 0italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≤ 0 in (α,β).𝛼𝛽\left(\alpha,\beta\right).( italic_α , italic_β ) . But this gives v0superscript𝑣0v^{\prime}\leq 0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ 0 in (α,β),𝛼𝛽\left(\alpha,\beta\right),( italic_α , italic_β ) , which contradicts our assumption on v.𝑣v.italic_v .

Assume case (b). Then the function rn1ϕ(v)superscript𝑟𝑛1italic-ϕsuperscript𝑣r^{n-1}\phi\left(v^{\prime}\right)italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is decreasing on (α,γ).𝛼𝛾\left(\alpha,\gamma\right).( italic_α , italic_γ ) . Since its value at α𝛼\alphaitalic_α is zero, we have rn1ϕ(v)0superscript𝑟𝑛1italic-ϕsuperscript𝑣0\ r^{n-1}\phi\left(v^{\prime}\right)\leq 0italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≤ 0 in (α,γ),𝛼𝛾\left(\alpha,\gamma\right),( italic_α , italic_γ ) , whence v0superscript𝑣0\ v^{\prime}\leq 0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ 0 in (α,γ),𝛼𝛾\left(\alpha,\gamma\right),( italic_α , italic_γ ) , again a contradiction. ∎

2.2. A Harnack type inequality

In this section we assume that the homeomorphism ϕitalic-ϕ\phiitalic_ϕ satisfies the following condition:

(Hϕ):

ϕitalic-ϕ\phiitalic_ϕ is C1,superscript𝐶1C^{1},italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ,

(2.6) sϕ(s)ϕ(s)and ϕ(s)σ>0for all s(a,0],formulae-sequenceformulae-sequence𝑠superscriptitalic-ϕ𝑠italic-ϕ𝑠and superscriptitalic-ϕ𝑠𝜎0for all 𝑠𝑎0s\phi^{\prime}\left(s\right)\leq\phi\left(s\right)\ \ \ \text{and\ \ \ }\phi^{% \prime}\left(s\right)\geq\sigma>0\ \ \ \text{for all }s\in(-a,0],italic_s italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) ≤ italic_ϕ ( italic_s ) and italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) ≥ italic_σ > 0 for all italic_s ∈ ( - italic_a , 0 ] ,

for some σ>0.𝜎0\sigma>0.italic_σ > 0 .

For example, such homeomorphisms are those involved by the classical Laplacian and the mean curvature operator in the Minkowski space.

Let R1(R0,R)subscript𝑅1subscript𝑅0𝑅\ R_{1}\in\left(R_{0},R\right)italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) be a fixed number and vW2,(R0,R)C1[R0,R]𝑣superscript𝑊2subscript𝑅0𝑅superscript𝐶1subscript𝑅0𝑅\ v\in W^{2,\infty}\left(R_{0},R\right)\cap C^{1}\left[R_{0},R\right]italic_v ∈ italic_W start_POSTSUPERSCRIPT 2 , ∞ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) ∩ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] be nonnegative on [R0,R],subscript𝑅0𝑅\left[R_{0},R\right],[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , decreasing on [R1,R],subscript𝑅1𝑅\left[R_{1},R\right],[ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R ] , with v(R)=0superscript𝑣𝑅0\ v^{\prime}\left(R\right)=0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 and

(2.7) L(v)=(rn1ϕ(v))+εrn1v0a.e. in (R0,R).formulae-sequence𝐿𝑣superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣𝜀superscript𝑟𝑛1𝑣0a.e. in subscript𝑅0𝑅L\left(v\right)=-\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}+% \varepsilon r^{n-1}v\geq 0\ \ \ \text{a.e. in\ }\left(R_{0},R\right).italic_L ( italic_v ) = - ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_v ≥ 0 a.e. in ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) .

We make the change of variable t=η(r),𝑡𝜂𝑟\ t=\eta\left(r\right),italic_t = italic_η ( italic_r ) , where

η(r)={lnRrfor n=2r2nR2nn2for n3𝜂𝑟cases𝑅𝑟for 𝑛2superscript𝑟2𝑛superscript𝑅2𝑛𝑛2for 𝑛3\eta\left(r\right)=\left\{\begin{array}[]{ll}\ln\frac{R}{r}&\text{for }n=2\\ \frac{r^{2-n}-R^{2-n}}{n-2}&\text{for }n\geq 3\end{array}\right.italic_η ( italic_r ) = { start_ARRAY start_ROW start_CELL roman_ln divide start_ARG italic_R end_ARG start_ARG italic_r end_ARG end_CELL start_CELL for italic_n = 2 end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_r start_POSTSUPERSCRIPT 2 - italic_n end_POSTSUPERSCRIPT - italic_R start_POSTSUPERSCRIPT 2 - italic_n end_POSTSUPERSCRIPT end_ARG start_ARG italic_n - 2 end_ARG end_CELL start_CELL for italic_n ≥ 3 end_CELL end_ROW end_ARRAY

by witch the interval (R0,R]subscript𝑅0𝑅(R_{0},R]( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] of r𝑟ritalic_r becomes [0,t1)0subscript𝑡1[0,t_{1})[ 0 , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) for t,𝑡t,italic_t , where t1=ln(R/R0)subscript𝑡1𝑅subscript𝑅0\ t_{1}=\ln\left(R/R_{0}\right)italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = roman_ln ( italic_R / italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) for n=2𝑛2n=2italic_n = 2 and t1=(R02nR2n)/(n2)subscript𝑡1superscriptsubscript𝑅02𝑛superscript𝑅2𝑛𝑛2\ t_{1}=\left(R_{0}^{2-n}-R^{2-n}\right)/\left(n-2\right)italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 - italic_n end_POSTSUPERSCRIPT - italic_R start_POSTSUPERSCRIPT 2 - italic_n end_POSTSUPERSCRIPT ) / ( italic_n - 2 ) for n3.𝑛3n\geq 3.italic_n ≥ 3 . Note that t1=+subscript𝑡1t_{1}=+\inftyitalic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = + ∞ if R0=0.subscript𝑅00R_{0}=0.italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 . Also, R1subscript𝑅1R_{1}italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT becomes t0:=η(R1).assignsubscript𝑡0𝜂subscript𝑅1t_{0}:=\eta\left(R_{1}\right).italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := italic_η ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) . Clearly 0<t0<t1. 0subscript𝑡0subscript𝑡1\ 0<t_{0}<t_{1}.0 < italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . Then, letting w(t)=v(r)𝑤𝑡𝑣𝑟\ w\left(t\right)=v\left(r\right)italic_w ( italic_t ) = italic_v ( italic_r ) and using

v(r)superscript𝑣𝑟\displaystyle v^{\prime}\left(r\right)italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) =\displaystyle== r1nw(t),superscript𝑟1𝑛superscript𝑤𝑡\displaystyle-r^{1-n}w^{\prime}\left(t\right),\ \ \ - italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) ,
v′′(r)superscript𝑣′′𝑟\displaystyle v^{\prime\prime}\left(r\right)italic_v start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_r ) =\displaystyle== r2(1n)w′′(t)+(n1)rnw(t)=r2(1n)w′′(t)(n1)r1v(r)superscript𝑟21𝑛superscript𝑤′′𝑡𝑛1superscript𝑟𝑛superscript𝑤𝑡superscript𝑟21𝑛superscript𝑤′′𝑡𝑛1superscript𝑟1superscript𝑣𝑟\displaystyle r^{2\left(1-n\right)}w^{\prime\prime}\left(t\right)+\left(n-1% \right)r^{-n}w^{\prime}\left(t\right)=r^{2\left(1-n\right)}w^{\prime\prime}% \left(t\right)-\left(n-1\right)r^{-1}v^{\prime}\left(r\right)italic_r start_POSTSUPERSCRIPT 2 ( 1 - italic_n ) end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_t ) + ( italic_n - 1 ) italic_r start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) = italic_r start_POSTSUPERSCRIPT 2 ( 1 - italic_n ) end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_t ) - ( italic_n - 1 ) italic_r start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r )

and

(rn1ϕ(v))=rn1ϕ(v)v′′(n1)rn2ϕ(v),superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣superscript𝑟𝑛1superscriptitalic-ϕsuperscript𝑣superscript𝑣′′𝑛1superscript𝑟𝑛2italic-ϕsuperscript𝑣-\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}=-r^{n-1}\phi^{\prime% }\left(v^{\prime}\right)v^{\prime\prime}-\left(n-1\right)r^{n-2}\phi\left(v^{% \prime}\right),- ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = - italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_v start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT - ( italic_n - 1 ) italic_r start_POSTSUPERSCRIPT italic_n - 2 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,

we rewrite (2.7) as

rn1ϕ(v){r2(1n)w′′(t)(n1)r1v(r)}(n1)rn2ϕ(v)+εrn1w0,superscript𝑟𝑛1superscriptitalic-ϕsuperscript𝑣superscript𝑟21𝑛superscript𝑤′′𝑡𝑛1superscript𝑟1superscript𝑣𝑟𝑛1superscript𝑟𝑛2italic-ϕsuperscript𝑣𝜀superscript𝑟𝑛1𝑤0-r^{n-1}\phi^{\prime}\left(v^{\prime}\right)\left\{r^{2\left(1-n\right)}w^{% \prime\prime}\left(t\right)-\left(n-1\right)r^{-1}v^{\prime}\left(r\right)% \right\}-\left(n-1\right)r^{n-2}\phi\left(v^{\prime}\right)+\varepsilon r^{n-1% }w\geq 0,- italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) { italic_r start_POSTSUPERSCRIPT 2 ( 1 - italic_n ) end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_t ) - ( italic_n - 1 ) italic_r start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) } - ( italic_n - 1 ) italic_r start_POSTSUPERSCRIPT italic_n - 2 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_w ≥ 0 ,

or equivalently

r1nϕ(v)w′′(t)+(n1)rn2{vϕ(v)ϕ(v)}+εrn1w0.superscript𝑟1𝑛superscriptitalic-ϕsuperscript𝑣superscript𝑤′′𝑡𝑛1superscript𝑟𝑛2superscript𝑣superscriptitalic-ϕsuperscript𝑣italic-ϕsuperscript𝑣𝜀superscript𝑟𝑛1𝑤0-r^{1-n}\phi^{\prime}\left(v^{\prime}\right)w^{\prime\prime}\left(t\right)+% \left(n-1\right)r^{n-2}\left\{v^{\prime}\phi^{\prime}\left(v^{\prime}\right)-% \phi\left(v^{\prime}\right)\right\}+\varepsilon r^{n-1}w\geq 0.- italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_t ) + ( italic_n - 1 ) italic_r start_POSTSUPERSCRIPT italic_n - 2 end_POSTSUPERSCRIPT { italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) } + italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_w ≥ 0 .

Since v0superscript𝑣0\ v^{\prime}\leq 0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ 0 on [R1,R],subscript𝑅1𝑅\left[R_{1},R\right],[ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R ] , in virtue of (2.6), one has vϕ(v)ϕ(v)0.superscript𝑣superscriptitalic-ϕsuperscript𝑣italic-ϕsuperscript𝑣0\ v^{\prime}\phi^{\prime}\left(v^{\prime}\right)-\phi\left(v^{\prime}\right)% \leq 0.italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≤ 0 . It follows that

r1nϕ(v)w′′(t)+εrn1w(t)0for a.e. t(0,t0].formulae-sequencesuperscript𝑟1𝑛superscriptitalic-ϕsuperscript𝑣superscript𝑤′′𝑡𝜀superscript𝑟𝑛1𝑤𝑡0for a.e. 𝑡0subscript𝑡0-r^{1-n}\phi^{\prime}\left(v^{\prime}\right)w^{\prime\prime}\left(t\right)+% \varepsilon r^{n-1}w\left(t\right)\geq 0\ \ \ \text{for a.e. }t\in(0,t_{0}].- italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_t ) + italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_w ( italic_t ) ≥ 0 for a.e. italic_t ∈ ( 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] .

Hence

w′′(t)+εr2(n1)ϕ(v)w(t)0for a.e. t(0,t0].formulae-sequencesuperscript𝑤′′𝑡𝜀superscript𝑟2𝑛1superscriptitalic-ϕsuperscript𝑣𝑤𝑡0for a.e. 𝑡0subscript𝑡0-w^{\prime\prime}\left(t\right)+\varepsilon\frac{r^{2\left(n-1\right)}}{\phi^{% \prime}\left(v^{\prime}\right)}w\left(t\right)\geq 0\ \ \ \text{for a.e. }t\in% (0,t_{0}].- italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_t ) + italic_ε divide start_ARG italic_r start_POSTSUPERSCRIPT 2 ( italic_n - 1 ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG italic_w ( italic_t ) ≥ 0 for a.e. italic_t ∈ ( 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] .

Since w0,𝑤0\ w\geq 0,italic_w ≥ 0 , rR𝑟𝑅r\leq R\ italic_r ≤ italic_R and ϕ(v)σ,superscriptitalic-ϕsuperscript𝑣𝜎\ \phi^{\prime}\left(v^{\prime}\right)\geq\sigma,\ italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≥ italic_σ , we deduce that

(2.8) w′′(t)+εR2(n1)σw(t)0for a.e. t (0,t0].formulae-sequencesuperscript𝑤′′𝑡𝜀superscript𝑅2𝑛1𝜎𝑤𝑡0for a.e. 𝑡 0subscript𝑡0-w^{\prime\prime}\left(t\right)+\frac{\varepsilon R^{2\left(n-1\right)}}{% \sigma}w\left(t\right)\geq 0\ \ \ \text{for a.e. }t\in\text{ }(0,t_{0}].- italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_t ) + divide start_ARG italic_ε italic_R start_POSTSUPERSCRIPT 2 ( italic_n - 1 ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ end_ARG italic_w ( italic_t ) ≥ 0 for a.e. italic_t ∈ ( 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] .

Notice that in virtue of v(r)=r1nw(t),superscript𝑣𝑟superscript𝑟1𝑛superscript𝑤𝑡\ v^{\prime}\left(r\right)=-r^{1-n}w^{\prime}\left(t\right),italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) = - italic_r start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) , w𝑤\ witalic_w is increasing on [0,t0]0subscript𝑡0[0,t_{0}][ 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] and since  v(R)=0,superscript𝑣𝑅0v^{\prime}\left(R\right)=0,italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 , one has w(0)=0.superscript𝑤00\ w^{\prime}\left(0\right)=0.italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 0 ) = 0 .

Now if we first integrate in (2.8) from 00 to t𝑡titalic_t (tt0)𝑡subscript𝑡0\left(t\leq t_{0}\right)( italic_t ≤ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) obtaining

w(t)εR2(n1)σ0tw(s)𝑑sεR2(n1)σw(t0)tfor tt0,formulae-sequencesuperscript𝑤𝑡𝜀superscript𝑅2𝑛1𝜎superscriptsubscript0𝑡𝑤𝑠differential-d𝑠𝜀superscript𝑅2𝑛1𝜎𝑤subscript𝑡0𝑡for 𝑡subscript𝑡0w^{\prime}\left(t\right)\leq\frac{\varepsilon R^{2\left(n-1\right)}}{\sigma}% \int_{0}^{t}w\left(s\right)ds\leq\frac{\varepsilon R^{2\left(n-1\right)}}{% \sigma}w\left(t_{0}\right)t\ \ \ \text{for\ \ }t\leq t_{0},italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) ≤ divide start_ARG italic_ε italic_R start_POSTSUPERSCRIPT 2 ( italic_n - 1 ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_w ( italic_s ) italic_d italic_s ≤ divide start_ARG italic_ε italic_R start_POSTSUPERSCRIPT 2 ( italic_n - 1 ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ end_ARG italic_w ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_t for italic_t ≤ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ,

and again from 00 to t0,subscript𝑡0t_{0},italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , we find that

w(t0)w(0)εR2(n1)2σt02w(t0).𝑤subscript𝑡0𝑤0𝜀superscript𝑅2𝑛12𝜎superscriptsubscript𝑡02𝑤subscript𝑡0w\left(t_{0}\right)-w\left(0\right)\leq\frac{\varepsilon R^{2\left(n-1\right)}% }{2\sigma}t_{0}^{2}w\left(t_{0}\right).italic_w ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_w ( 0 ) ≤ divide start_ARG italic_ε italic_R start_POSTSUPERSCRIPT 2 ( italic_n - 1 ) end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_σ end_ARG italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_w ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Hence

w(0)(1εR2(n1)2σt02)w(t0).𝑤01𝜀superscript𝑅2𝑛12𝜎superscriptsubscript𝑡02𝑤subscript𝑡0w\left(0\right)\geq\left(1-\frac{\varepsilon R^{2\left(n-1\right)}}{2\sigma}t_% {0}^{2}\right)w\left(t_{0}\right).italic_w ( 0 ) ≥ ( 1 - divide start_ARG italic_ε italic_R start_POSTSUPERSCRIPT 2 ( italic_n - 1 ) end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_σ end_ARG italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_w ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Letting

γ:=1εR2(n1)2σt02,assign𝛾1𝜀superscript𝑅2𝑛12𝜎superscriptsubscript𝑡02\gamma:=1-\frac{\varepsilon R^{2\left(n-1\right)}}{2\sigma}t_{0}^{2},italic_γ := 1 - divide start_ARG italic_ε italic_R start_POSTSUPERSCRIPT 2 ( italic_n - 1 ) end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_σ end_ARG italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

assuming that γ>0𝛾0\gamma>0italic_γ > 0 (which happens for small enough ε𝜀\varepsilonitalic_ε) and recalling that w(0)=mint[0,t0]w(t),𝑤0subscript𝑡0subscript𝑡0𝑤𝑡w\left(0\right)=\min_{t\in[0,t_{0}]}w\left(t\right),italic_w ( 0 ) = roman_min start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUBSCRIPT italic_w ( italic_t ) , w(t0)=maxt[0,t0]w(t),𝑤subscript𝑡0subscript𝑡0subscript𝑡0𝑤𝑡w\left(t_{0}\right)=\max_{t\in\left[0,t_{0}\right]}w\left(t\right),italic_w ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = roman_max start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUBSCRIPT italic_w ( italic_t ) , we have

mint[0,t0]w(t)γmaxt[0,t0]w(t).subscript𝑡0subscript𝑡0𝑤𝑡𝛾subscript𝑡0subscript𝑡0𝑤𝑡\min_{t\in[0,t_{0}]}w\left(t\right)\geq\gamma\max_{t\in\left[0,t_{0}\right]}w% \left(t\right).roman_min start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUBSCRIPT italic_w ( italic_t ) ≥ italic_γ roman_max start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUBSCRIPT italic_w ( italic_t ) .

Coming back to function v,𝑣v,italic_v , we have the Harnack inequality

v(R)=minr[R1,R]v(r)γmaxr[R1,R]v(r)=γv(R1).𝑣𝑅subscript𝑟subscript𝑅1𝑅𝑣𝑟𝛾subscript𝑟subscript𝑅1𝑅𝑣𝑟𝛾𝑣subscript𝑅1v\left(R\right)=\min_{r\in\left[R_{1},R\right]}v\left(r\right)\geq\gamma\max_{% r\in[R_{1},R]}v\left(r\right)=\gamma v\left(R_{1}\right).italic_v ( italic_R ) = roman_min start_POSTSUBSCRIPT italic_r ∈ [ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_v ( italic_r ) ≥ italic_γ roman_max start_POSTSUBSCRIPT italic_r ∈ [ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_v ( italic_r ) = italic_γ italic_v ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

Notice that in the case R0>0,subscript𝑅00R_{0}>0,italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0 , we may take R1=R0subscript𝑅1subscript𝑅0R_{1}=R_{0}italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and so t0=ψ(R1)subscript𝑡0𝜓subscript𝑅1t_{0}=\psi\left(R_{1}\right)italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_ψ ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is finite and the above reasoning remains true yielding to the better inequality

v(R)=minr[R0,R]v(r)γmaxr[R0,R]v(r)=γv(R0).𝑣𝑅subscript𝑟subscript𝑅0𝑅𝑣𝑟𝛾subscript𝑟subscript𝑅0𝑅𝑣𝑟𝛾𝑣subscript𝑅0v\left(R\right)=\min_{r\in\left[R_{0},R\right]}v\left(r\right)\geq\gamma\max_{% r\in[R_{0},R]}v\left(r\right)=\gamma v\left(R_{0}\right).italic_v ( italic_R ) = roman_min start_POSTSUBSCRIPT italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_v ( italic_r ) ≥ italic_γ roman_max start_POSTSUBSCRIPT italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_v ( italic_r ) = italic_γ italic_v ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Thus we have the following result.

Theorem 2.4.

Assume that condition (Hϕ) holds. Then for every number R1[R0,R)subscript𝑅1subscript𝑅0𝑅\ R_{1}\in[R_{0},R)italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) with η(R1)<+,𝜂subscript𝑅1\ \eta\left(R_{1}\right)<+\infty,italic_η ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) < + ∞ , there exists ε0=ε0(R1,σ,R)>0subscript𝜀0subscript𝜀0subscript𝑅1𝜎𝑅0\ \varepsilon_{0}=\varepsilon_{0}\left(R_{1},\sigma,R\right)>0italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_σ , italic_R ) > 0 such that for every 0<ε<ε0,0𝜀subscript𝜀00<\varepsilon<\varepsilon_{0},0 < italic_ε < italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , there is a constant γ=γ(R1,σ,R,ε)>0𝛾𝛾subscript𝑅1𝜎𝑅𝜀0\ \gamma=\gamma\left(R_{1},\sigma,R,\varepsilon\right)>0italic_γ = italic_γ ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_σ , italic_R , italic_ε ) > 0 such that

v(R)γv(R1)𝑣𝑅𝛾𝑣subscript𝑅1v\left(R\right)\geq\gamma v\left(R_{1}\right)italic_v ( italic_R ) ≥ italic_γ italic_v ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )

for every vW2,(R0,R)C1[R0,R]𝑣superscript𝑊2subscript𝑅0𝑅superscript𝐶1subscript𝑅0𝑅\ v\in W^{2,\infty}\left(R_{0},R\right)\cap C^{1}\left[R_{0},R\right]italic_v ∈ italic_W start_POSTSUPERSCRIPT 2 , ∞ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) ∩ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] nonnegative on [R0,R],subscript𝑅0𝑅\left[R_{0},R\right],[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , decreasing on [R1,R],subscript𝑅1𝑅\left[R_{1},R\right],[ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R ] , withv(R)=0superscript𝑣𝑅0\ \ v^{\prime}\left(R\right)=0italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 andL(v):=(rn1ϕ(v))+εrn1v0assign𝐿𝑣superscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣𝜀superscript𝑟𝑛1𝑣0\ \ L\left(v\right):=-\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{\prime}% +\varepsilon r^{n-1}v\geq 0\ italic_L ( italic_v ) := - ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_v ≥ 0 a.e. in (R0,R).subscript𝑅0𝑅\left(R_{0},R\right).( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) .

3. Existence, localization and multiplicity

3.1. The solution operator

Let K+subscript𝐾K_{+}italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT be the positive cone of C[R0,R].𝐶subscript𝑅0𝑅C\left[R_{0},R\right].italic_C [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] .

In what follows we assume that for every function hK+,subscript𝐾h\in K_{+},italic_h ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , problem (2.1) has a solution. This hapens for example in case of singular homeomorphisms as shows Corollary 2.4 in [3]. Then, in virtue of the previous lemmas, the solution operator S:K+K+:𝑆subscript𝐾subscript𝐾S:K_{+}\rightarrow K_{+}italic_S : italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT → italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT attaching to each hhitalic_h the corresponding (unique) solution v𝑣vitalic_v is well-defined and isotone. In addition, one has

Lemma 3.1.

The solution operator S𝑆Sitalic_S is completely continuous from K+subscript𝐾K_{+}italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT to K+.subscript𝐾K_{+}.italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT .

Proof.

(a) S(M)𝑆𝑀S\left(M\right)italic_S ( italic_M ) is relatively compact for every bounded set MK+.𝑀subscript𝐾M\subset K_{+}.italic_M ⊂ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT . Indeed, if C>0𝐶0C>0italic_C > 0 is such that |h|=maxr[R0,R]|h(r)|Csubscriptsubscript𝑟subscript𝑅0𝑅𝑟𝐶\ \left|h\right|_{\infty}=\max_{r\in\left[R_{0},R\right]}\left|h\left(r\right)% \right|\leq C\ | italic_h | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = roman_max start_POSTSUBSCRIPT italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT | italic_h ( italic_r ) | ≤ italic_C for all hM,𝑀h\in M,italic_h ∈ italic_M , then from 0hC0𝐶0\leq h\leq C0 ≤ italic_h ≤ italic_C one has 0S(h)S(C).0𝑆𝑆𝐶0\leq S\left(h\right)\leq S\left(C\right).0 ≤ italic_S ( italic_h ) ≤ italic_S ( italic_C ) . Hence |S(h)||S(C)|.subscript𝑆subscript𝑆𝐶\left|S\left(h\right)\right|_{\infty}\leq\left|S\left(C\right)\right|_{\infty}.| italic_S ( italic_h ) | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≤ | italic_S ( italic_C ) | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT . Thus S(M)𝑆𝑀S\left(M\right)italic_S ( italic_M ) is bounded in K+.subscript𝐾K_{+}.italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT . Now from (2.1) we see that the derivatives of the functions v𝑣vitalic_v from S(M)𝑆𝑀S\left(M\right)italic_S ( italic_M ) are uniformly bounded, that is S(M)𝑆𝑀S\left(M\right)italic_S ( italic_M ) is equicontinuous. Therefore S(M)𝑆𝑀S\left(M\right)italic_S ( italic_M ) is relatively compact in C[R0,R].𝐶subscript𝑅0𝑅C\left[R_{0},R\right].italic_C [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] .

(b) S𝑆Sitalic_S is continuous. Let hkK+subscript𝑘subscript𝐾\ h_{k}\in K_{+}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT be convergent to some h\ hitalic_h and let vk=S(hk).subscript𝑣𝑘𝑆subscript𝑘\ v_{k}=S\left(h_{k}\right).italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_S ( italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . We need to prove that vkS(h).subscript𝑣𝑘𝑆\ v_{k}\rightarrow S\left(h\right).italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT → italic_S ( italic_h ) . According to Lemma 3.1 there is a convergent subsequence of (vk).subscript𝑣𝑘\left(v_{k}\right).( italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . Let v𝑣vitalic_v be its limit. Passing to the limit in (2.2) and (2.3) written for hksubscript𝑘h_{k}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and vk,subscript𝑣𝑘v_{k},italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , we find that S(h)=v.𝑆𝑣S\left(h\right)=v.italic_S ( italic_h ) = italic_v . As a result the whole sequence (vk)subscript𝑣𝑘\left(v_{k}\right)( italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) converges to S(h).𝑆S\left(h\right).italic_S ( italic_h ) .

Now it is clear that v𝑣vitalic_v is a nonnegative solution of (1.2) if and only if v𝑣vitalic_v is a fixed point of the operator

T:K+K+,T=SNf,:𝑇formulae-sequencesubscript𝐾subscript𝐾𝑇𝑆subscript𝑁𝑓T:K_{+}\rightarrow K_{+},\ \ \ T=S\circ N_{f},italic_T : italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT → italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_T = italic_S ∘ italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ,

where Nf(v)=f(,v())subscript𝑁𝑓𝑣𝑓𝑣N_{f}\left(v\right)=f\left(\cdot,v\left(\cdot\right)\right)italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_v ) = italic_f ( ⋅ , italic_v ( ⋅ ) ) is the Nemytski operator associated to f.𝑓f.italic_f . According to the previous lemmas about the solution operator, the operator T𝑇Titalic_T is well-defined and completely continuous.

3.2. Existence and localization

Now, for any number α>0,𝛼0\alpha>0,italic_α > 0 , consider the set

Vα:={vK+:|v|<α}.assignsubscript𝑉𝛼conditional-set𝑣subscript𝐾subscript𝑣𝛼V_{\alpha}:=\left\{v\in K_{+}:\ \left|v\right|_{\infty}<\alpha\right\}.italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT := { italic_v ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT : | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < italic_α } .

The operator T𝑇Titalic_T being completely continuous, the set T(V¯α)𝑇subscript¯𝑉𝛼T\left(\overline{V}_{\alpha}\right)italic_T ( over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) is bounded, so there is a number α~α~𝛼𝛼\widetilde{\alpha}\geq\alphaover~ start_ARG italic_α end_ARG ≥ italic_α such that T(V¯α)V¯α~.𝑇subscript¯𝑉𝛼subscript¯𝑉~𝛼T\left(\overline{V}_{\alpha}\right)\subset\overline{V}_{\widetilde{\alpha}}.italic_T ( over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) ⊂ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT . Define the modified operator T~:V¯α~V¯α~:~𝑇subscript¯𝑉~𝛼subscript¯𝑉~𝛼\widetilde{T}:\overline{V}_{\widetilde{\alpha}}\rightarrow\overline{V}_{% \widetilde{\alpha}}over~ start_ARG italic_T end_ARG : over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT → over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT by

T~(v)=T(min{α|v|,1}v).~𝑇𝑣𝑇𝛼subscript𝑣1𝑣\widetilde{T}\left(v\right)=T\left(\min\left\{\frac{\alpha}{\left|v\right|_{% \infty}},1\right\}v\right).over~ start_ARG italic_T end_ARG ( italic_v ) = italic_T ( roman_min { divide start_ARG italic_α end_ARG start_ARG | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_ARG , 1 } italic_v ) .

The following two lemmas rely on the properties of the fixed point index (see, a.e., [9]).

Lemma 3.2.

If

(3.1) T(v)λvfor vK+ with |v|=α and λ1,formulae-sequence𝑇𝑣𝜆𝑣for 𝑣subscript𝐾 with subscript𝑣𝛼 and 𝜆1T\left(v\right)\neq\lambda v\ \ \ \text{for }v\in K_{+}\text{ with }\left|v% \right|_{\infty}=\alpha\text{ and }\lambda\geq 1,italic_T ( italic_v ) ≠ italic_λ italic_v for italic_v ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT with | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = italic_α and italic_λ ≥ 1 ,

then the fixed point index i(T~,Vα,V¯α~)=1.𝑖~𝑇subscript𝑉𝛼subscript¯𝑉~𝛼1\ i\left(\widetilde{T},V_{\alpha},\overline{V}_{\widetilde{\alpha}}\right)=1.italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = 1 .

Next, denote  |v|0:=minr[R0,R]v(r)assignsubscript𝑣0subscript𝑟subscript𝑅0𝑅𝑣𝑟\left|v\right|_{0}:=\min_{r\in\left[R_{0},R\right]}v\left(r\right)\ | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := roman_min start_POSTSUBSCRIPT italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_v ( italic_r ) and for a number β>0,𝛽0\beta>0,italic_β > 0 , consider the set

Wβ:={vV¯α~:|v|0<β}.assignsubscript𝑊𝛽conditional-set𝑣subscript¯𝑉~𝛼subscript𝑣0𝛽W_{\beta}:=\left\{v\in\overline{V}_{\widetilde{\alpha}}:\ \left|v\right|_{0}<% \beta\right\}.italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT := { italic_v ∈ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT : | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_β } .

It is clear that Wβsubscript𝑊𝛽W_{\beta}italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT is open in V¯α~.subscript¯𝑉~𝛼\overline{V}_{\widetilde{\alpha}}.over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT .

Lemma 3.3.

Assume that for a function hK+subscript𝐾h\in K_{+}italic_h ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT such that |h|=α,subscript𝛼\left|h\right|_{\infty}=\alpha,| italic_h | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = italic_α , |h|0>β,subscript0𝛽\left|h\right|_{0}>\beta,| italic_h | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > italic_β , one has

(3.2) (1λ)T(v)+λhvfor vK+ with |v|α,|v|0=β and λ[0,1].formulae-sequenceformulae-sequence1𝜆𝑇𝑣𝜆𝑣for 𝑣subscript𝐾 with subscript𝑣𝛼subscript𝑣0𝛽 and 𝜆01\left(1-\lambda\right)T\left(v\right)+\lambda h\neq v\ \ \text{for }v\in K_{+}% \text{ with }\left|v\right|_{\infty}\leq\alpha,\ \left|v\right|_{0}=\beta\text% { and }\lambda\in\left[0,1\right].( 1 - italic_λ ) italic_T ( italic_v ) + italic_λ italic_h ≠ italic_v for italic_v ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT with | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≤ italic_α , | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_β and italic_λ ∈ [ 0 , 1 ] .

Then i(T~,Wβ,V¯α~)=0.𝑖~𝑇subscript𝑊𝛽subscript¯𝑉~𝛼0\ i\left(\widetilde{T},W_{\beta},\overline{V}_{\widetilde{\alpha}}\right)=0.italic_i ( over~ start_ARG italic_T end_ARG , italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = 0 .

Lemma 3.4.

Under the assumptions of Lemmas 3.2 and 3.3, the operator T𝑇Titalic_T has a fixed point v𝑣vitalic_v in VαW¯β,subscript𝑉𝛼subscript¯𝑊𝛽\ V_{\alpha}\setminus\overline{W}_{\beta},italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , that is problem (1.2) has a solution v𝑣\ vitalic_v which is nonnegative on [R0,R],subscript𝑅0𝑅\left[R_{0},R\right],[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] ,  with β<|v|0𝛽subscript𝑣0\ \beta<\left|v\right|_{0}\ italic_β < | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPTand |v|<α.subscript𝑣𝛼\ \left|v\right|_{\infty}<\alpha.| italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < italic_α .

Proof.

One has

11\displaystyle 11 =\displaystyle== i(T~,Vα,V¯α~)=i(T~,VαW¯β,V¯α~)+i(T~,VαWβ,V¯α~),𝑖~𝑇subscript𝑉𝛼subscript¯𝑉~𝛼𝑖~𝑇subscript𝑉𝛼subscript¯𝑊𝛽subscript¯𝑉~𝛼𝑖~𝑇subscript𝑉𝛼subscript𝑊𝛽subscript¯𝑉~𝛼\displaystyle i\left(\widetilde{T},V_{\alpha},\overline{V}_{\widetilde{\alpha}% }\right)=i\left(\widetilde{T},V_{\alpha}\setminus\overline{W}_{\beta},% \overline{V}_{\widetilde{\alpha}}\right)+i\left(\widetilde{T},V_{\alpha}\cap W% _{\beta},\overline{V}_{\widetilde{\alpha}}\right),italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) + italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∩ italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) ,
00\displaystyle 0 =\displaystyle== i(T~,Wβ,V¯α~)=i(T~,WβV¯α,V¯α~)+i(T~,VαWβ,V¯α~).𝑖~𝑇subscript𝑊𝛽subscript¯𝑉~𝛼𝑖~𝑇subscript𝑊𝛽subscript¯𝑉𝛼subscript¯𝑉~𝛼𝑖~𝑇subscript𝑉𝛼subscript𝑊𝛽subscript¯𝑉~𝛼\displaystyle i\left(\widetilde{T},W_{\beta},\overline{V}_{\widetilde{\alpha}}% \right)=i\left(\widetilde{T},W_{\beta}\setminus\overline{V}_{\alpha},\overline% {V}_{\widetilde{\alpha}}\right)+i\left(\widetilde{T},V_{\alpha}\cap W_{\beta},% \overline{V}_{\widetilde{\alpha}}\right).italic_i ( over~ start_ARG italic_T end_ARG , italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = italic_i ( over~ start_ARG italic_T end_ARG , italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) + italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∩ italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) .

Subtracting gives

(3.3) i(T~,VαW¯β,V¯α~)i(T~,WβV¯α,V¯α~)=1.𝑖~𝑇subscript𝑉𝛼subscript¯𝑊𝛽subscript¯𝑉~𝛼𝑖~𝑇subscript𝑊𝛽subscript¯𝑉𝛼subscript¯𝑉~𝛼1i\left(\widetilde{T},V_{\alpha}\setminus\overline{W}_{\beta},\overline{V}_{% \widetilde{\alpha}}\right)-i\left(\widetilde{T},W_{\beta}\setminus\overline{V}% _{\alpha},\overline{V}_{\widetilde{\alpha}}\right)=1.italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) - italic_i ( over~ start_ARG italic_T end_ARG , italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = 1 .

Hence at least one of the numbers  i(T~,VαW¯β,V¯α~)𝑖~𝑇subscript𝑉𝛼subscript¯𝑊𝛽subscript¯𝑉~𝛼i\left(\widetilde{T},V_{\alpha}\setminus\overline{W}_{\beta},\overline{V}_{% \widetilde{\alpha}}\right)italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) and  i(T~,WβV¯α,V¯α~)𝑖~𝑇subscript𝑊𝛽subscript¯𝑉𝛼subscript¯𝑉~𝛼i\left(\widetilde{T},W_{\beta}\setminus\overline{V}_{\alpha},\overline{V}_{% \widetilde{\alpha}}\right)italic_i ( over~ start_ARG italic_T end_ARG , italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) is nonzero. We claim that the last one equals zero. Indeed, otherwise there would exist vWβV¯α𝑣subscript𝑊𝛽subscript¯𝑉𝛼v\in W_{\beta}\setminus\overline{V}_{\alpha}italic_v ∈ italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT with T~(v)=v,~𝑇𝑣𝑣\widetilde{T}\left(v\right)=v,over~ start_ARG italic_T end_ARG ( italic_v ) = italic_v , that is

T(α|v|v)=v,𝑇𝛼subscript𝑣𝑣𝑣T\left(\frac{\alpha}{\left|v\right|_{\infty}}v\right)=v,italic_T ( divide start_ARG italic_α end_ARG start_ARG | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_ARG italic_v ) = italic_v ,

or equivalently T(ω)=λω,𝑇𝜔𝜆𝜔T\left(\omega\right)=\lambda\omega,italic_T ( italic_ω ) = italic_λ italic_ω , where ω=α|v|v𝜔𝛼subscript𝑣𝑣\omega=\frac{\alpha}{\left|v\right|_{\infty}}vitalic_ω = divide start_ARG italic_α end_ARG start_ARG | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_ARG italic_v and λ=|v|α.𝜆subscript𝑣𝛼\lambda=\frac{\left|v\right|_{\infty}}{\alpha}.italic_λ = divide start_ARG | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_ARG start_ARG italic_α end_ARG . Since |ω|=αsubscript𝜔𝛼\left|\omega\right|_{\infty}=\alpha| italic_ω | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = italic_α and λ>1𝜆1\lambda>1italic_λ > 1 we arrived to a contradiction with (3.1). Therefore  i(T~,WβV¯α,V¯α~)=0𝑖~𝑇subscript𝑊𝛽subscript¯𝑉𝛼subscript¯𝑉~𝛼0i\left(\widetilde{T},W_{\beta}\setminus\overline{V}_{\alpha},\overline{V}_{% \widetilde{\alpha}}\right)=0italic_i ( over~ start_ARG italic_T end_ARG , italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = 0 and from (3.3) one has i(T~,VαW¯β,V¯α~)=1,𝑖~𝑇subscript𝑉𝛼subscript¯𝑊𝛽subscript¯𝑉~𝛼1i\left(\widetilde{T},V_{\alpha}\setminus\overline{W}_{\beta},\overline{V}_{% \widetilde{\alpha}}\right)=1,italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = 1 , which implies our conclusion. ∎

We are now ready to state and prove our main existence and localization result.

For any numbers 0<β<α,0𝛽𝛼0<\beta<\alpha,0 < italic_β < italic_α , denote

mα,βsubscript𝑚𝛼𝛽\displaystyle m_{\alpha,\beta}italic_m start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT ::\displaystyle:: =min{f(r,s):r[R0,R],s[β,α]},absent:𝑓𝑟𝑠formulae-sequence𝑟subscript𝑅0𝑅𝑠𝛽𝛼\displaystyle=\min\left\{f\left(r,s\right):\ r\in\left[R_{0},R\right],\ s\in% \left[\beta,\alpha\right]\right\},= roman_min { italic_f ( italic_r , italic_s ) : italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , italic_s ∈ [ italic_β , italic_α ] } ,
Mαsubscript𝑀𝛼\displaystyle M_{\alpha}italic_M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ::\displaystyle:: =max{f(r,s):r[R0,R],s[0,α]}.absent:𝑓𝑟𝑠formulae-sequence𝑟subscript𝑅0𝑅𝑠0𝛼\displaystyle=\max\left\{f\left(r,s\right):\ r\in\left[R_{0},R\right],\ s\in% \left[0,\alpha\right]\right\}.= roman_max { italic_f ( italic_r , italic_s ) : italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , italic_s ∈ [ 0 , italic_α ] } .
Theorem 3.5.

If for two positive numbers α,β𝛼𝛽\alpha,\betaitalic_α , italic_β satisfying α>β,𝛼𝛽\alpha>\beta,italic_α > italic_β , the following conditions

(h1):

Mα<εα,subscript𝑀𝛼𝜀𝛼M_{\alpha}<\varepsilon\alpha,italic_M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT < italic_ε italic_α ,

(h2):

mα,β>εβsubscript𝑚𝛼𝛽𝜀𝛽m_{\alpha,\beta}>\varepsilon\betaitalic_m start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT > italic_ε italic_β

hold, then problem (1.2) has a positive solution v𝑣\ vitalic_v such that

β<|v|0and |v|<α.formulae-sequence𝛽subscript𝑣0and subscript𝑣𝛼\beta<\left|v\right|_{0}\ \ \ \text{and\ \ \ }\left|v\right|_{\infty}<\alpha.italic_β < | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < italic_α .
Proof.

First, we remark that inequality α>β𝛼𝛽\alpha>\betaitalic_α > italic_β guarantees the existence of a function hK+subscript𝐾h\in K_{+}italic_h ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT such that |h|=αsubscript𝛼\left|h\right|_{\infty}=\alpha| italic_h | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = italic_α and |h|0>βsubscript0𝛽\left|h\right|_{0}>\beta| italic_h | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > italic_β as needed in Lemma 3.3. Such a function is the constant h=α.𝛼h=\alpha.italic_h = italic_α .

Assume that for some vK+𝑣subscript𝐾v\in K_{+}italic_v ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT with |v|=αsubscript𝑣𝛼\left|v\right|_{\infty}=\alpha| italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = italic_α and some λ1,𝜆1\lambda\geq 1,italic_λ ≥ 1 , one has T(v)=λv.𝑇𝑣𝜆𝑣T\left(v\right)=\lambda v.italic_T ( italic_v ) = italic_λ italic_v . Then vλv=S(Nf(v))S(Mα)=Mα/ε,𝑣𝜆𝑣𝑆subscript𝑁𝑓𝑣𝑆subscript𝑀𝛼subscript𝑀𝛼𝜀v\leq\lambda v=S\left(N_{f}\left(v\right)\right)\leq S\left(M_{\alpha}\right)=% M_{\alpha}/\varepsilon,italic_v ≤ italic_λ italic_v = italic_S ( italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_v ) ) ≤ italic_S ( italic_M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) = italic_M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT / italic_ε , so α=|v|Mα/ε,𝛼subscript𝑣subscript𝑀𝛼𝜀\ \alpha=\left|v\right|_{\infty}\leq M_{\alpha}/\varepsilon,italic_α = | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≤ italic_M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT / italic_ε , which contradicts (h1). Hence Lemma 3.2 applies.

Assume that for some vK+𝑣subscript𝐾v\in K_{+}italic_v ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT with |v|α,|v|0=βformulae-sequencesubscript𝑣𝛼subscript𝑣0𝛽\left|v\right|_{\infty}\leq\alpha,\ \left|v\right|_{0}=\beta| italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≤ italic_α , | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_β and λ[0,1]𝜆01\lambda\in\left[0,1\right]italic_λ ∈ [ 0 , 1 ] we have (1λ)T(v)+λα=v.1𝜆𝑇𝑣𝜆𝛼𝑣\left(1-\lambda\right)T\left(v\right)+\lambda\alpha=v.( 1 - italic_λ ) italic_T ( italic_v ) + italic_λ italic_α = italic_v . Clearly,

T(v)=S(Nf(v))S(mα,β)=mαβε,𝑇𝑣𝑆subscript𝑁𝑓𝑣𝑆subscript𝑚𝛼𝛽subscript𝑚𝛼𝛽𝜀T\left(v\right)=S\left(N_{f}\left(v\right)\right)\geq S\left(m_{\alpha,\beta}% \right)=\frac{m_{\alpha\beta}}{\varepsilon},italic_T ( italic_v ) = italic_S ( italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_v ) ) ≥ italic_S ( italic_m start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT ) = divide start_ARG italic_m start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT end_ARG start_ARG italic_ε end_ARG ,

hence according to (h2),

|T(v)|0mαβε>β.subscript𝑇𝑣0subscript𝑚𝛼𝛽𝜀𝛽\left|T\left(v\right)\right|_{0}\geq\frac{m_{\alpha\beta}}{\varepsilon}>\beta.| italic_T ( italic_v ) | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≥ divide start_ARG italic_m start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT end_ARG start_ARG italic_ε end_ARG > italic_β .

Then

β=|v|0=|(1λ)T(v)+λα|0>β.𝛽subscript𝑣0subscript1𝜆𝑇𝑣𝜆𝛼0𝛽\beta=\left|v\right|_{0}=\left|\left(1-\lambda\right)T\left(v\right)+\lambda% \alpha\right|_{0}>\beta.italic_β = | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = | ( 1 - italic_λ ) italic_T ( italic_v ) + italic_λ italic_α | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > italic_β .

Hence Lemma 3.3 also applies. The conclusion now follows from Lemma 3.4. ∎

Remark 3.1.

(a) If we assume that for each r[R0,R],𝑟subscript𝑅0𝑅r\in\left[R_{0},R\right],italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , the function f(r,.)f\left(r,.\right)italic_f ( italic_r , . ) is increasing on [0,α],0𝛼\left[0,\alpha\right],[ 0 , italic_α ] , then

mα,β=min{f(r,β):r[R0,R]},Mα=max{f(r,α):r[R0,R]}.formulae-sequencesubscript𝑚𝛼𝛽:𝑓𝑟𝛽𝑟subscript𝑅0𝑅subscript𝑀𝛼:𝑓𝑟𝛼𝑟subscript𝑅0𝑅m_{\alpha,\beta}=\min\left\{f\left(r,\beta\right):\ r\in\left[R_{0},R\right]% \right\},\ \ \ M_{\alpha}=\max\left\{f\left(r,\alpha\right):\ r\in\left[R_{0},% R\right]\right\}.italic_m start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT = roman_min { italic_f ( italic_r , italic_β ) : italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] } , italic_M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = roman_max { italic_f ( italic_r , italic_α ) : italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] } .

(b) If f(r,s)=a(r)g(s),𝑓𝑟𝑠𝑎𝑟𝑔𝑠f\left(r,s\right)=a\left(r\right)g\left(s\right),italic_f ( italic_r , italic_s ) = italic_a ( italic_r ) italic_g ( italic_s ) , where a𝑎aitalic_a is continuous and positive on [R0,R]subscript𝑅0𝑅\left[R_{0},R\right][ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] and g𝑔gitalic_g is increasing on [0,α],0𝛼\left[0,\alpha\right],[ 0 , italic_α ] , then

mα,β=mag(β),Mα=Mag(α),formulae-sequencesubscript𝑚𝛼𝛽subscript𝑚𝑎𝑔𝛽subscript𝑀𝛼subscript𝑀𝑎𝑔𝛼m_{\alpha,\beta}=m_{a}g\left(\beta\right),\ \ \ M_{\alpha}=M_{a}g\left(\alpha% \right),italic_m start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT = italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_g ( italic_β ) , italic_M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_g ( italic_α ) ,

where ma=min[R0,R]a(r),Ma=max[R0,R]a(r).formulae-sequencesubscript𝑚𝑎subscriptsubscript𝑅0𝑅𝑎𝑟subscript𝑀𝑎subscriptsubscript𝑅0𝑅𝑎𝑟\ m_{a}=\min_{\left[R_{0},R\right]}a\left(r\right),\ M_{a}=\max_{\left[R_{0},R% \right]}a\left(r\right).italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = roman_min start_POSTSUBSCRIPT [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_a ( italic_r ) , italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = roman_max start_POSTSUBSCRIPT [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] end_POSTSUBSCRIPT italic_a ( italic_r ) .

3.3. Decreasing solutions

Here assume the following monotonicity properties of f::𝑓absentf:italic_f :

(Hf):

f(.,s)f\left(.,s\right)italic_f ( . , italic_s ) is decreasing in [R0,R]subscript𝑅0𝑅\left[R_{0},R\right][ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] for each s+𝑠subscripts\in\mathbb{R}_{+}italic_s ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT and f(r,.)f\left(r,.\right)italic_f ( italic_r , . ) is increasing in +subscript\mathbb{R}_{+}blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT for each r[R0,R].𝑟subscript𝑅0𝑅r\in\left[R_{0},R\right].italic_r ∈ [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] .

Under this condition, if a nonnegative function v𝑣\ vitalic_v is decreasing on [R0,R],subscript𝑅0𝑅\left[R_{0},R\right],[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] , then the function Nf(v)=f(.,v(.))\ N_{f}\left(v\right)=f\left(.,v\left(.\right)\right)\ italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_v ) = italic_f ( . , italic_v ( . ) ) is decreasing too. Thus, if we consider the sub-cone  K𝐾Kitalic_K of  K+subscript𝐾K_{+}italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT defined by

K:={vK+:v is decreasing on [R0,R]},assign𝐾conditional-set𝑣subscript𝐾𝑣 is decreasing on subscript𝑅0𝑅K:=\left\{v\in K_{+}:\ v\text{ is decreasing on }\left[R_{0},R\right]\right\},italic_K := { italic_v ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT : italic_v is decreasing on [ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] } ,

then in view of Lemma 2.3, we have T(K)K𝑇𝐾𝐾\ T\left(K\right)\subset Kitalic_T ( italic_K ) ⊂ italic_K and we can apply the reasoning from the proof of Theorem 3.5, working in K𝐾Kitalic_K instead of K+.subscript𝐾K_{+}.italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT . In this way, the existence of a decreasing solution is obtained. Using in addition Theorem 2.4, we obtain the following result.

Theorem 3.6.

Assume that conditions (Hϕ) and (Hf) hold and that  R1,εsubscript𝑅1𝜀R_{1},\ \varepsilonitalic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ε and γ𝛾\ \gammaitalic_γ are as in Section 2.2. If for two numbers 0<β<α 0𝛽𝛼\ 0<\beta<\alpha0 < italic_β < italic_α one has

(h1’):

f(R0,α)<εα;𝑓subscript𝑅0𝛼𝜀𝛼f\left(R_{0},\alpha\right)<\varepsilon\alpha;italic_f ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_α ) < italic_ε italic_α ;

(h2’):

f(R,β)>εβ,𝑓𝑅𝛽𝜀𝛽f\left(R,\beta\right)>\varepsilon\beta,italic_f ( italic_R , italic_β ) > italic_ε italic_β ,

then problem (1.2) has a decreasing positive solution v𝑣vitalic_v such that

β<v(R),v(R0)<α,formulae-sequence𝛽𝑣𝑅𝑣subscript𝑅0𝛼\beta<v\left(R\right),\ \ \ \ v\left(R_{0}\right)<\alpha,italic_β < italic_v ( italic_R ) , italic_v ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) < italic_α ,
(3.4) v(R)γv(R1).𝑣𝑅𝛾𝑣subscript𝑅1v\left(R\right)\geq\gamma v\left(R_{1}\right).italic_v ( italic_R ) ≥ italic_γ italic_v ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .
Remark 3.2.

Inequality (3.4)3.4(\ref{rap})( ) gives us the bound 1/γ,1𝛾1/\gamma,1 / italic_γ , independent on α𝛼\alphaitalic_α and β,𝛽\beta,italic_β , for the ratio v(R1)/v(R)𝑣subscript𝑅1𝑣𝑅v\left(R_{1}\right)/v\left(R\right)italic_v ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) / italic_v ( italic_R ) between the maximum and the minimum of v𝑣vitalic_v on the interval [R1,R].subscript𝑅1𝑅\left[R_{1},R\right].[ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R ] . Thus, if for such a solution v,𝑣v,italic_v , v(R1)𝑣subscript𝑅1v\left(R_{1}\right)italic_v ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is large, say v(R1)>k,𝑣subscript𝑅1𝑘\ v\left(R_{1}\right)>k,italic_v ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) > italic_k , then its minimum v(R)𝑣𝑅v\left(R\right)italic_v ( italic_R ) is larger than γk;𝛾𝑘\ \gamma k;italic_γ italic_k ; if its minimum v(R)𝑣𝑅v\left(R\right)italic_v ( italic_R ) is small, say v(R)<1/k,𝑣𝑅1𝑘\ v\left(R\right)<1/k,italic_v ( italic_R ) < 1 / italic_k , then v(R1)𝑣subscript𝑅1v\left(R_{1}\right)italic_v ( italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is smaller than 1/(γk).1𝛾𝑘\ 1/\left(\gamma k\right).1 / ( italic_γ italic_k ) . As noted above, in the case of the annulus, i.e., for R0>0,subscript𝑅00R_{0}>0,italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0 , one may take R1=R0subscript𝑅1subscript𝑅0R_{1}=R_{0}italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and then 1/γ1𝛾\ 1/\gamma1 / italic_γ is a bound for the ratio between the maximum and the minimum of v𝑣vitalic_v on the whole interval [R0,R].subscript𝑅0𝑅\left[R_{0},R\right].[ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] .

3.4. Multiple solutions

We first give a three-solution result.

Theorem 3.7.

Under the assumptions of Theorem 3.5, if in addition there exists α0(0,β)subscript𝛼00𝛽\ \alpha_{0}\in\left(0,\beta\right)italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ ( 0 , italic_β ) such that

Mα0<εα0,subscript𝑀subscript𝛼0𝜀subscript𝛼0M_{\alpha_{0}}<\varepsilon\alpha_{0},italic_M start_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT < italic_ε italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ,

then problem (1.2) has at least three nonnegative solutions solutions v1,v2,v3subscript𝑣1subscript𝑣2subscript𝑣3\ v_{1},v_{2},v_{3}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT such that

β𝛽\displaystyle\betaitalic_β <\displaystyle<< |v1|0,|v1|<α;subscriptsubscript𝑣10subscriptsubscript𝑣1𝛼\displaystyle\left|v_{1}\right|_{0},\ \ \ \left|v_{1}\right|_{\infty}<\alpha;| italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , | italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < italic_α ;
|v2|subscriptsubscript𝑣2\displaystyle\left|v_{2}\right|_{\infty}| italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT <\displaystyle<< α0;subscript𝛼0\displaystyle\alpha_{0};italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ;
|v3|0subscriptsubscript𝑣30\displaystyle\left|v_{3}\right|_{0}| italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT <\displaystyle<< β,|v3|>α0.𝛽subscriptsubscript𝑣3subscript𝛼0\displaystyle\beta,\ \ \ \left|v_{3}\right|_{\infty}>\alpha_{0}.italic_β , | italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT > italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .
Proof.

Solution v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is guaranteed by Theorem 3.5. Next from i(T~,Vα0,V¯α~)=1𝑖~𝑇subscript𝑉subscript𝛼0subscript¯𝑉~𝛼1\ i\left(\widetilde{T},V_{\alpha_{0}},\overline{V}_{\widetilde{\alpha}}\right)=1italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = 1 we obtain the solution v2.subscript𝑣2\ v_{2}.italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT . Now, let us remark that V¯α0Wβ.subscript¯𝑉subscript𝛼0subscript𝑊𝛽\ \overline{V}_{\alpha_{0}}\subset W_{\beta}.\ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⊂ italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT . Indeed, if vV¯α0𝑣subscript¯𝑉subscript𝛼0\ v\in\overline{V}_{\alpha_{0}}italic_v ∈ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT then |v|α0<βsubscript𝑣subscript𝛼0𝛽\ \left|v\right|_{\infty}\leq\alpha_{0}<\beta| italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≤ italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_β and so |v|0|v|<β.subscript𝑣0subscript𝑣𝛽\ \left|v\right|_{0}\leq\left|v\right|_{\infty}<\beta.| italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < italic_β . Hence vWβ.𝑣subscript𝑊𝛽\ v\in W_{\beta}.italic_v ∈ italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT . This inclusion implies

i(T~,WβV¯α0,V¯α~)=i(T~,Wβ,V¯α~)i(T~,Vα0,V¯α~)=01=1,𝑖~𝑇subscript𝑊𝛽subscript¯𝑉subscript𝛼0subscript¯𝑉~𝛼𝑖~𝑇subscript𝑊𝛽subscript¯𝑉~𝛼𝑖~𝑇subscript𝑉subscript𝛼0subscript¯𝑉~𝛼011i\left(\widetilde{T},W_{\beta}\setminus\overline{V}_{\alpha_{0}},\overline{V}_% {\widetilde{\alpha}}\right)=i\left(\widetilde{T},W_{\beta},\overline{V}_{% \widetilde{\alpha}}\right)-i\left(\widetilde{T},V_{\alpha_{0}},\overline{V}_{% \widetilde{\alpha}}\right)=0-1=-1,italic_i ( over~ start_ARG italic_T end_ARG , italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ∖ over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = italic_i ( over~ start_ARG italic_T end_ARG , italic_W start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) - italic_i ( over~ start_ARG italic_T end_ARG , italic_V start_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT over~ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ) = 0 - 1 = - 1 ,

whence the existence of v3.subscript𝑣3\ v_{3}.italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT .

Obviously, the solution  v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT can be zero. However, this is not the case if  f(.,0)0.f\left(.,0\right)\neq 0.italic_f ( . , 0 ) ≠ 0 .

Next we establish the existence of an arbitrary number of solutions, or of a sequence of solutions, by assuming a strong oscillation in s𝑠sitalic_s of nonlinearity f(r,s).𝑓𝑟𝑠f\left(r,s\right).italic_f ( italic_r , italic_s ) .

Theorem 3.8.

(10)superscript10(1^{0})( 1 start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ) Let (αi)1ik,(βi)1iksubscriptsubscript𝛼𝑖1𝑖𝑘subscriptsubscript𝛽𝑖1𝑖𝑘\ \left(\alpha_{i}\right)_{1\leq i\leq k},\ \left(\beta_{i}\right)_{1\leq i% \leq k}( italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_i ≤ italic_k end_POSTSUBSCRIPT , ( italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≤ italic_i ≤ italic_k end_POSTSUBSCRIPT (k+)𝑘\left(k\leq+\infty\right)( italic_k ≤ + ∞ ) be increasing finite or infinite sequences of positive numbers with βi<αiβi+1subscript𝛽𝑖subscript𝛼𝑖subscript𝛽𝑖1\ \beta_{i}<\alpha_{i}\leq\beta_{i+1}italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ italic_β start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT for all i.𝑖i.italic_i . If the assumptions of Theorem 3.5 are satisfied for each couple (αi,βi),subscript𝛼𝑖subscript𝛽𝑖\ \left(\alpha_{i},\beta_{i}\right),( italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , then problem (1.2) has k𝑘kitalic_k (respectively, when k=+,𝑘k=+\infty,italic_k = + ∞ , an infinite sequence of) distinct solutions visubscript𝑣𝑖\ v_{i}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT with

(3.5) βi<|vi|0,|vi|<αi.formulae-sequencesubscript𝛽𝑖subscriptsubscript𝑣𝑖0subscriptsubscript𝑣𝑖subscript𝛼𝑖\beta_{i}<\left|v_{i}\right|_{0},\ \ \ \left|v_{i}\right|_{\infty}<\alpha_{i}.italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < | italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , | italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT .

(20)superscript20\left(2^{0}\right)( 2 start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ) Let (αi)i1,(βi)i1subscriptsubscript𝛼𝑖𝑖1subscriptsubscript𝛽𝑖𝑖1\ \left(\alpha_{i}\right)_{i\geq 1},\ \left(\beta_{i}\right)_{i\geq 1}( italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i ≥ 1 end_POSTSUBSCRIPT , ( italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i ≥ 1 end_POSTSUBSCRIPT be decreasing infinite sequences with αi+1βi<αisubscript𝛼𝑖1subscript𝛽𝑖subscript𝛼𝑖\ \alpha_{i+1}\leq\beta_{i}<\alpha_{i}\ italic_α start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ≤ italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for all i.𝑖i.italic_i . If the assumptions of Theorem 3.5 are satisfied for each couple (αi,βi),subscript𝛼𝑖subscript𝛽𝑖\ \left(\alpha_{i},\beta_{i}\right),( italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , then problem (1.2) has an infinite sequence of distinct solutions visubscript𝑣𝑖\ v_{i}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT satisfying (3.5).

Proof.

Denote

Ki:={vK+:βi<|v|0,|v|<αi}.assignsubscript𝐾𝑖conditional-set𝑣subscript𝐾formulae-sequencesubscript𝛽𝑖subscript𝑣0subscript𝑣subscript𝛼𝑖K_{i}:=\left\{v\in K_{+}:\ \beta_{i}<\left|v\right|_{0},\ \ \left|v\right|_{% \infty}<\alpha_{i}\right\}.italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT := { italic_v ∈ italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT : italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } .

It is sufficient to remark that KiKi+1=subscript𝐾𝑖subscript𝐾𝑖1K_{i}\cap K_{i+1}=\emptysetitalic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∩ italic_K start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT = ∅  for all i.𝑖i.italic_i . To prove this let us first assume that sequences (αi),(βi)subscript𝛼𝑖subscript𝛽𝑖\left(\alpha_{i}\right),\left(\beta_{i}\right)( italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , ( italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) are increasing (case (10superscript101^{0}1 start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT)). Then since αiβi+1,subscript𝛼𝑖subscript𝛽𝑖1\alpha_{i}\leq\beta_{i+1},italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ italic_β start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT , for any vKi𝑣subscript𝐾𝑖v\in K_{i}italic_v ∈ italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT one has |v|0|v|<αiβi+1.subscript𝑣0subscript𝑣subscript𝛼𝑖subscript𝛽𝑖1\ \left|v\right|_{0}\leq\left|v\right|_{\infty}<\alpha_{i}\leq\beta_{i+1}.\ | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ | italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ italic_β start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT .Hence vKi+1.𝑣subscript𝐾𝑖1\ v\notin K_{i+1}.italic_v ∉ italic_K start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT . Similarly, in case (20superscript202^{0}2 start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT), if vKi,𝑣subscript𝐾𝑖v\in K_{i},italic_v ∈ italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , then |v||v|0>βiαi+1,subscript𝑣subscript𝑣0subscript𝛽𝑖subscript𝛼𝑖1\ \left|v\right|_{\infty}\geq\left|v\right|_{0}>\beta_{i}\geq\alpha_{i+1},| italic_v | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≥ | italic_v | start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ italic_α start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT , so vKi+1.𝑣subscript𝐾𝑖1\ v\notin K_{i+1}.italic_v ∉ italic_K start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT .

Remark 3.3.

Under assumptions (Hϕ) and (Hf), if multiple decreasing solutions are obtained via Theorem 3.6, then for all of them, one has the same bound 1/γ1𝛾\ 1/\gamma\ 1 / italic_γ for the ratio between their maximum and minimum on the interval [R1,R].subscript𝑅1𝑅\left[R_{1},R\right].[ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R ] .

3.5. Existence and multiplicity under asymptotic conditions

In the situation where only the existence of solutions is of interest and not exactly their location, the asymptotic conditions on f𝑓fitalic_f are sufficient and easier to check than the punctual conditions.

Assume here again, as in Remark 3.1 (b), the following form of f,𝑓f,italic_f ,

f(r,s)=a(r)g(s),𝑓𝑟𝑠𝑎𝑟𝑔𝑠f\left(r,s\right)=a\left(r\right)g\left(s\right),italic_f ( italic_r , italic_s ) = italic_a ( italic_r ) italic_g ( italic_s ) ,

where a𝑎\ a\ italic_a is continuous and positive on [R0,R]subscript𝑅0𝑅\left[R_{0},R\right][ italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ] and g𝑔\ g\ italic_g is increasing on +.subscript\mathbb{R}_{+}.blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT .

Thus the existence of two numbers α,𝛼\ \alpha,italic_α , β𝛽\betaitalic_β with α>β𝛼𝛽\ \alpha>\beta\ italic_α > italic_β and satisfying (h1), (h2) obviously follows from the asymptotic conditions

liminfτ+g(τ)τ<εMaand limsupτ0g(τ)τ>εma,formulae-sequencesubscriptinfimum𝜏𝑔𝜏𝜏𝜀subscript𝑀𝑎and subscriptsupremum𝜏0𝑔𝜏𝜏𝜀subscript𝑚𝑎\lim\inf_{\tau\rightarrow+\infty}\frac{g\left(\tau\right)}{\tau}<\frac{% \varepsilon}{M_{a}}\ \ \text{and\ }\ \lim\sup_{\tau\rightarrow 0}\frac{g\left(% \tau\right)}{\tau}>\frac{\varepsilon}{m_{a}},roman_lim roman_inf start_POSTSUBSCRIPT italic_τ → + ∞ end_POSTSUBSCRIPT divide start_ARG italic_g ( italic_τ ) end_ARG start_ARG italic_τ end_ARG < divide start_ARG italic_ε end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG and roman_lim roman_sup start_POSTSUBSCRIPT italic_τ → 0 end_POSTSUBSCRIPT divide start_ARG italic_g ( italic_τ ) end_ARG start_ARG italic_τ end_ARG > divide start_ARG italic_ε end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG ,

respectively.

Also, two sequences (αi)subscript𝛼𝑖\left(\alpha_{i}\right)( italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) and (βi)subscript𝛽𝑖\left(\beta_{i}\right)( italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) exist as in Theorem 3.8 (10) provided that

liminfτ+g(τ)τ<εMaand limsupτ+g(τ)τ>εma,formulae-sequencesubscriptinfimum𝜏𝑔𝜏𝜏𝜀subscript𝑀𝑎and subscriptsupremum𝜏𝑔𝜏𝜏𝜀subscript𝑚𝑎\lim\inf_{\tau\rightarrow+\infty}\frac{g\left(\tau\right)}{\tau}<\frac{% \varepsilon}{M_{a}}\ \ \text{and\ \ }\lim\sup_{\tau\rightarrow+\infty}\frac{g% \left(\tau\right)}{\tau}>\frac{\varepsilon}{m_{a}},roman_lim roman_inf start_POSTSUBSCRIPT italic_τ → + ∞ end_POSTSUBSCRIPT divide start_ARG italic_g ( italic_τ ) end_ARG start_ARG italic_τ end_ARG < divide start_ARG italic_ε end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG and roman_lim roman_sup start_POSTSUBSCRIPT italic_τ → + ∞ end_POSTSUBSCRIPT divide start_ARG italic_g ( italic_τ ) end_ARG start_ARG italic_τ end_ARG > divide start_ARG italic_ε end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG ,

and as in Theorem 3.8 (20) provided that

liminfτ0g(τ)τ<εMa, limsupτ0g(τ)τ>εma.formulae-sequencesubscriptinfimum𝜏0𝑔𝜏𝜏𝜀subscript𝑀𝑎 subscriptsupremum𝜏0𝑔𝜏𝜏𝜀subscript𝑚𝑎\lim\inf_{\tau\rightarrow 0}\frac{g\left(\tau\right)}{\tau}<\frac{\varepsilon}% {M_{a}},\ \ \text{\ }\lim\sup_{\tau\rightarrow 0}\frac{g\left(\tau\right)}{% \tau}>\frac{\varepsilon}{m_{a}}.roman_lim roman_inf start_POSTSUBSCRIPT italic_τ → 0 end_POSTSUBSCRIPT divide start_ARG italic_g ( italic_τ ) end_ARG start_ARG italic_τ end_ARG < divide start_ARG italic_ε end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG , roman_lim roman_sup start_POSTSUBSCRIPT italic_τ → 0 end_POSTSUBSCRIPT divide start_ARG italic_g ( italic_τ ) end_ARG start_ARG italic_τ end_ARG > divide start_ARG italic_ε end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG .

4. Numerical solutions

In order to carry out our numerical experiments we have use the MATLAB object-oriented package Chebfun. We refer only to [17] and [18] for the details on using this package although the literature on this topic is much broader.

The numerical experiments performed on a similar problem in [10], encouraged us to use this programming environment and not others. It proved to be very simple and flexible in writing a code, including in imposing the boundary conditions, an otherwise non-trivial matter. The details it provides regarding the convergence of the Newton method are extremely useful.

We present three concrete Neumann problems for which numerical solutions are obtained confirming the theoretical results.

4.1. First example

We look for a nonzero numerical solution and to confirm the theory for the Neumann boundary value problem involving the classical Laplacian

(4.1) {(rv)+rv=rvr+1,r(0,1)v(0)=v(1).casessuperscript𝑟superscript𝑣𝑟𝑣𝑟𝑣𝑟1𝑟01superscript𝑣0superscript𝑣1missing-subexpression\left\{\begin{array}[]{ll}-\left(rv^{\prime}\right)^{\prime}+rv=r\frac{\sqrt{v% }}{r+1},&r\in\left(0,1\right)\\ v^{\prime}\left(0\right)=v^{\prime}\left(1\right).&\end{array}\right.{ start_ARRAY start_ROW start_CELL - ( italic_r italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_r italic_v = italic_r divide start_ARG square-root start_ARG italic_v end_ARG end_ARG start_ARG italic_r + 1 end_ARG , end_CELL start_CELL italic_r ∈ ( 0 , 1 ) end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 0 ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 1 ) . end_CELL start_CELL end_CELL end_ROW end_ARRAY

Here, with the notations from the previous sections, n=2,ε=1,R0=0,R=1formulae-sequence𝑛2formulae-sequence𝜀1formulae-sequencesubscript𝑅00𝑅1\ n=2,\ \varepsilon=1,\ R_{0}=0,\ R=1\ italic_n = 2 , italic_ε = 1 , italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 , italic_R = 1and f(r,s)=s/(r+1).𝑓𝑟𝑠𝑠𝑟1\ f\left(r,s\right)=\sqrt{s}/\left(r+1\right).\ \ italic_f ( italic_r , italic_s ) = square-root start_ARG italic_s end_ARG / ( italic_r + 1 ) .Notice the special form of f,𝑓f,italic_f , f(r,s)=a(r)g(s),𝑓𝑟𝑠𝑎𝑟𝑔𝑠f\left(r,s\right)=a\left(r\right)g\left(s\right),italic_f ( italic_r , italic_s ) = italic_a ( italic_r ) italic_g ( italic_s ) , where a(r)=1/(r+1)𝑎𝑟1𝑟1\ a\left(r\right)=1/\left(r+1\right)\ italic_a ( italic_r ) = 1 / ( italic_r + 1 ) is decreasing and g(s)=s𝑔𝑠𝑠\ g\left(s\right)=\sqrt{s}\ italic_g ( italic_s ) = square-root start_ARG italic_s end_ARG is increasing.

The theory is confirmed if a decreasing positive solution v𝑣\ v\ italic_v and numbers α,𝛼\ \alpha,italic_α , β>0,𝛽0\beta>0,italic_β > 0 , β<α𝛽𝛼\beta<\alpha\ italic_β < italic_α are found such that the following inequalities are satisfied:

mag(β)subscript𝑚𝑎𝑔𝛽\displaystyle m_{a}g\left(\beta\right)italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_g ( italic_β ) >\displaystyle>> εβ,Mag(α)<εα,𝜀𝛽subscript𝑀𝑎𝑔𝛼𝜀𝛼\displaystyle\varepsilon\beta,\ \ \ M_{a}g\left(\alpha\right)<\varepsilon\alpha,italic_ε italic_β , italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_g ( italic_α ) < italic_ε italic_α ,
β𝛽\displaystyle\betaitalic_β <\displaystyle<< v(R),v(R0)<α,𝑣𝑅𝑣subscript𝑅0𝛼\displaystyle v\left(R\right),\ \ \ v\left(R_{0}\right)<\alpha,italic_v ( italic_R ) , italic_v ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) < italic_α ,

which applied to the present example, for which ε=1,𝜀1\varepsilon=1,italic_ε = 1 , ma=1/2,subscript𝑚𝑎12m_{a}=1/2,italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 / 2 , Ma=1,subscript𝑀𝑎1M_{a}=1,italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 1 , g(α)=α𝑔𝛼𝛼g\left(\alpha\right)=\sqrt{\alpha}italic_g ( italic_α ) = square-root start_ARG italic_α end_ARG and g(β)=β,𝑔𝛽𝛽g\left(\beta\right)=\sqrt{\beta},\ italic_g ( italic_β ) = square-root start_ARG italic_β end_ARG , read as:

(4.2) β<0.25, 1<α,β<v(1),v(0)<α.formulae-sequence𝛽0.25formulae-sequence1𝛼formulae-sequence𝛽𝑣1𝑣0𝛼\beta<0.25,\ \ \ 1<\alpha,\ \ \ \ \beta<v\left(1\right),\ \ \ \ v\left(0\right% )<\alpha.italic_β < 0.25 , 1 < italic_α , italic_β < italic_v ( 1 ) , italic_v ( 0 ) < italic_α .

The numerical solution v𝑣vitalic_v is presented in Fig. 1 and the confirmation of the theory takes place, for example, with α=0.4𝛼0.4\ \alpha=0.4italic_α = 0.4 and β=0.35.𝛽0.35\ \beta=0.35.italic_β = 0.35 .

Figure 1. Graph of the numerical solution of problem (4.1). The initial guess for the initialization of the Newton procedure is v0:=1.assignsubscript𝑣01v_{0}:=1.italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := 1 .

From Fig. 2 a) we observe that the Newton method converges in five steps and has at least order two of convergence. The panel b) of the same figure shows that Chebfun use a polynomial of order 16161616 whose coefficients decrease linearly to order 1014.superscript101410^{-14}.10 start_POSTSUPERSCRIPT - 14 end_POSTSUPERSCRIPT .

Figure 2. a) The convergence of Newton method. b) The behavior of Chebyshev coefficients of solution to problem (4.1).

The residual in approximating the differential operator has been of order 1011superscript101110^{-11}10 start_POSTSUPERSCRIPT - 11 end_POSTSUPERSCRIPT and the boundary conditions have been exactly satisfied.

4.2. Second example

Here we look for a nonzero numerical solution and to confirm the theory for the Neumann boundary value problem involving the mean curvature operator in the Minkowski space,

(4.3) {(rv1v2)+rv=rvr+1,r(0,1)v(0)=v(1),casessuperscript𝑟superscript𝑣1superscript𝑣2𝑟𝑣𝑟𝑣𝑟1𝑟01superscript𝑣0superscript𝑣1missing-subexpression\left\{\begin{array}[]{ll}-\left(r\frac{v^{\prime}}{\sqrt{1-v^{\prime 2}}}% \right)^{\prime}+rv=r\frac{\sqrt{v}}{r+1},&r\in\left(0,1\right)\\ v^{\prime}\left(0\right)=v^{\prime}\left(1\right),&\end{array}\right.{ start_ARRAY start_ROW start_CELL - ( italic_r divide start_ARG italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG square-root start_ARG 1 - italic_v start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT end_ARG end_ARG ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_r italic_v = italic_r divide start_ARG square-root start_ARG italic_v end_ARG end_ARG start_ARG italic_r + 1 end_ARG , end_CELL start_CELL italic_r ∈ ( 0 , 1 ) end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 0 ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 1 ) , end_CELL start_CELL end_CELL end_ROW end_ARRAY

or equivalently

{v′′1r(1v2)v+(1v2)32v=(1v2)32vr+1,r(0,1)v(0)=v(1).casessuperscript𝑣′′1𝑟1superscript𝑣2superscript𝑣superscript1superscript𝑣232𝑣superscript1superscript𝑣232𝑣𝑟1𝑟01superscript𝑣0superscript𝑣1missing-subexpression\left\{\begin{array}[]{ll}-v^{\prime\prime}-\frac{1}{r}\left(1-v^{\prime 2}% \right)v^{\prime}+\left(1-v^{\prime 2}\right)^{\frac{3}{2}}v=\left(1-v^{\prime 2% }\right)^{\frac{3}{2}}\frac{\sqrt{v}}{r+1},&r\in\left(0,1\right)\\ v^{\prime}\left(0\right)=v^{\prime}\left(1\right).&\end{array}\right.{ start_ARRAY start_ROW start_CELL - italic_v start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ( 1 - italic_v start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT ) italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + ( 1 - italic_v start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_v = ( 1 - italic_v start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT divide start_ARG square-root start_ARG italic_v end_ARG end_ARG start_ARG italic_r + 1 end_ARG , end_CELL start_CELL italic_r ∈ ( 0 , 1 ) end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 0 ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 1 ) . end_CELL start_CELL end_CELL end_ROW end_ARRAY

Here again, n=2,ε=1,R0=0,R=1,f(r,s)=s/(r+1)formulae-sequence𝑛2formulae-sequence𝜀1formulae-sequencesubscript𝑅00formulae-sequence𝑅1𝑓𝑟𝑠𝑠𝑟1\ n=2,\ \varepsilon=1,\ R_{0}=0,\ R=1,\ \ f\left(r,s\right)=\sqrt{s}/\left(r+1\right)italic_n = 2 , italic_ε = 1 , italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 , italic_R = 1 , italic_f ( italic_r , italic_s ) = square-root start_ARG italic_s end_ARG / ( italic_r + 1 ) and the theory is confirmed by inequalities (4.2).

The numerical solution v𝑣\ v\ italic_v is displayed in Fig. 3 and the confirmation of the theory takes place, for example, with α=1.45𝛼1.45\ \alpha=1.45italic_α = 1.45 and β=1.35.𝛽1.35\ \beta=1.35.italic_β = 1.35 .

Figure 3. Graph of the numerical solution of problem (4.3). The initial guess for the initialization of the Newton procedure is v0:=1.assignsubscript𝑣01v_{0}:=1.italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := 1 .

From Fig. 4a) we observe that the Newton method converges in four steps and has at least order two of convergence. The panel b) of the same figure shows that Chebfun use a polynomial of order 16161616 whose coefficients decrease linearly to order 1014.superscript101410^{-14}.10 start_POSTSUPERSCRIPT - 14 end_POSTSUPERSCRIPT .

Figure 4. a) The convergence of Newton method. b) The behavior of Chebyshev coefficients of solution to problem (4.3).

The residual in approximating the differential operator has been of order 1011superscript101110^{-11}10 start_POSTSUPERSCRIPT - 11 end_POSTSUPERSCRIPT and the boundary conditions have been exactly satisfied.

4.3. Third example

As the theory shows, the Neumann problem can have multiple positive solutions for functions f(r,s)𝑓𝑟𝑠f\left(r,s\right)italic_f ( italic_r , italic_s ) which are oscillating with respect to s.𝑠s.italic_s . To make more understandable this statement, let us first consider the simplest case of the autonomous equation (1.1), that is f(r,s)=g(s).𝑓𝑟𝑠𝑔𝑠f\left(r,s\right)=g\left(s\right).italic_f ( italic_r , italic_s ) = italic_g ( italic_s ) . Then it is trivial to see that any constant C𝐶Citalic_C satisfying εC=g(C)𝜀𝐶𝑔𝐶\ \varepsilon C=g\left(C\right)\ italic_ε italic_C = italic_g ( italic_C ) is a solution of the problem

{(rn1ϕ(v))+εrn1v=rn1g(v)in (R0,R)v(R0)=v(R)=0.casessuperscriptsuperscript𝑟𝑛1italic-ϕsuperscript𝑣𝜀superscript𝑟𝑛1𝑣superscript𝑟𝑛1𝑔𝑣in subscript𝑅0𝑅superscript𝑣subscript𝑅0superscript𝑣𝑅0missing-subexpression\left\{\begin{array}[]{ll}-\left(r^{n-1}\phi\left(v^{\prime}\right)\right)^{% \prime}+\varepsilon r^{n-1}v=r^{n-1}g(v)&\text{in }\left(R_{0},R\right)\\ v^{\prime}\left(R_{0}\right)=v^{\prime}(R)=0.&\end{array}\right.{ start_ARRAY start_ROW start_CELL - ( italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_ε italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_v = italic_r start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_g ( italic_v ) end_CELL start_CELL in ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_R ) end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_R ) = 0 . end_CELL start_CELL end_CELL end_ROW end_ARRAY

Hence if the graph of g𝑔\ g\ italic_g intersects the line of equation y=εx𝑦𝜀𝑥\ y=\varepsilon x\ italic_y = italic_ε italic_x in several points, then the problem has at least as many solutions. Therefore one obtains multiple solutions when g𝑔gitalic_g is oscillating, here around the line y=εx.𝑦𝜀𝑥y=\varepsilon x.italic_y = italic_ε italic_x . The phenomenon also occurs in the non-autonomous case, as the theory shows. Thus, for f(r,s)=a(r)g(s),𝑓𝑟𝑠𝑎𝑟𝑔𝑠f\left(r,s\right)=a\left(r\right)g\left(s\right),italic_f ( italic_r , italic_s ) = italic_a ( italic_r ) italic_g ( italic_s ) , multiple solutions are guaranteed if g𝑔gitalic_g oscillates up and down the lines y=(ε/Ma)x𝑦𝜀subscript𝑀𝑎𝑥y=\left(\varepsilon/M_{a}\right)xitalic_y = ( italic_ε / italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) italic_x and y=(ε/ma)x,𝑦𝜀subscript𝑚𝑎𝑥y=\left(\varepsilon/m_{a}\right)x,italic_y = ( italic_ε / italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) italic_x , respectively.

As an example of such a function, we can mention

g(s)=as+bssin(cln(s+1)),s+,formulae-sequence𝑔𝑠𝑎𝑠𝑏𝑠𝑐𝑠1𝑠subscriptg\left(s\right)=as+bs\sin\left(c\ln\left(s+1\right)\right),\ \ \ s\in\mathbb{R% }_{+},italic_g ( italic_s ) = italic_a italic_s + italic_b italic_s roman_sin ( italic_c roman_ln ( italic_s + 1 ) ) , italic_s ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ,

where a,b,c>0𝑎𝑏𝑐0\ a,b,c>0italic_a , italic_b , italic_c > 0 and a(c+1)b𝑎𝑐1𝑏\ a\geq\left(c+1\right)bitalic_a ≥ ( italic_c + 1 ) italic_b (for g𝑔gitalic_g to be increasing). This function has a countable number of intersections with a line y=λx,𝑦𝜆𝑥\ y=\lambda x,\ italic_y = italic_λ italic_x , provided that abλa+b.𝑎𝑏𝜆𝑎𝑏\ a-b\leq\lambda\leq a+b.\ italic_a - italic_b ≤ italic_λ ≤ italic_a + italic_b . For numerical simulations, we choose the following values of parameters: a=2,𝑎2a=2,italic_a = 2 , b=c=1𝑏𝑐1b=c=1italic_b = italic_c = 1 and we consider the following Neumann problem for the classical Laplacian

(4.4) {(rv)+rv=rr+1(2v+vsin(ln(v+1))),r(0,1)v(0)=v(1).casessuperscript𝑟superscript𝑣𝑟𝑣𝑟𝑟12𝑣𝑣𝑣1𝑟01superscript𝑣0superscript𝑣1missing-subexpression\left\{\begin{array}[]{ll}-\left(rv^{\prime}\right)^{\prime}+rv=\frac{r}{r+1}% \left(2v+v\sin\left(\ln\left(v+1\right)\right)\right),&r\in\left(0,1\right)\\ v^{\prime}\left(0\right)=v^{\prime}\left(1\right).&\end{array}\right.{ start_ARRAY start_ROW start_CELL - ( italic_r italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_r italic_v = divide start_ARG italic_r end_ARG start_ARG italic_r + 1 end_ARG ( 2 italic_v + italic_v roman_sin ( roman_ln ( italic_v + 1 ) ) ) , end_CELL start_CELL italic_r ∈ ( 0 , 1 ) end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 0 ) = italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 1 ) . end_CELL start_CELL end_CELL end_ROW end_ARRAY

Fig. 5 and 7 show two positive solutions of this problem. They were obtained by using the same procedure as before, with different initial approximations. In general, initial approximations can be suggested by the localization intervals as given by the theory.

Figure 5. Graph of a numerical solution of problem (4.4). The initial guess for the initialization of the Newton procedure is v0:=cos(πr)+106.assignsubscript𝑣0𝜋𝑟superscript106v_{0}:=\cos\left(\pi r\right)+10^{6}.italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := roman_cos ( italic_π italic_r ) + 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT .

From Fig. 6 a) we observe that the Newton method converges in six steps and the panel b) of the same figure shows that Chebfun use a polynomial of order 16161616 whose coefficients decrease linearly to order 108.superscript10810^{-8}.10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT .

Figure 6. a) The convergence of Newton method. b) The behavior of Chebyshev coefficients of solution to problem (4.4).

The residual in approximating the differential operator has been only of order 105superscript10510^{-5}10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT but the boundary conditions have been exactly satisfied.

All these last three observations lead us to state that Chebfun no longer achieves the accuracy of the previous two problems. Another solution to problem (4.4 is displayed in Fig. 7.

Figure 7. Graph of a second numerical solution of problem (4.4). The initial guess for the initialization of the Newton procedure is v0:=cos(πr)+102.assignsubscript𝑣0𝜋𝑟superscript102v_{0}:=\cos\left(\pi r\right)+10^{2}.italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := roman_cos ( italic_π italic_r ) + 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

To find it, Newton’s algorithm starts from a different initial guess. However, comparing these last two solutions, i.e, Fig. 5 and 7, it is observed that they have identical allures (shapes).

We can conclude that using Chebfun we have succeeded to numerically confirm, with great accuracy, some of our theoretical results regarding the existence, localization and multiplicity of positive radial solutions for Neumann problems in the ball.

References

  • [1] R. Bartnik, L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys. 87 (1982) 131–152. https://doi.org/10.1007/BF01211061.
  • [2] J. Benedikt, P. Girg, L. Kotrla, P. Takac, Origin of the p𝑝pitalic_p-Laplacian and A. Missbach, Electron. J. Differential Equations 2018 (2018), No. 16, 1–17. http://ejde.math.txstate.edu or http://ejde.math.unt.edu.
  • [3] C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces, Math. Nachr. 283 (2010) 379–391. https://doi.org/10.1002/mana.200910083.
  • [4] D. Bonheure, B. Noris, T. Weth, Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012) 573–588. https://doi.org/10.1016/j.anihpc.2012.02.002.
  • [5] D. Bonheure, E. Serra, P. Tilli, Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal. 265 (2013) 375–398. doi: 10.1016/j.jfa.2013.05.027.
  • [6] A. Boscaggin, F. Colasuonno, B. Noris, Multiple positive solutions for a class of p𝑝pitalic_p-Laplacian Neumann problems without growth conditions, ESAIM Control Optim. Calc. Var. 24 (2018) 1625–1644. https://doi.org/10.1051/cocv/2017074.
  • [7] A. Boscaggin, G. Feltrin, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal. 196 (2020), 111807. https://doi.org/10.1016/j.na.2020.111807.
  • [8] F. Colasuonno, B. Noris, Radial positive solutions for p𝑝pitalic_p-Laplacian supercritical Neumann problems, Bruno Pini Mathematical Analysis Seminar 8(1) (2017) 55–72. https://doi.org/10.6092/issn.2240-2829/7797
  • [9] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
  • [10] C. I. Gheorghiu, A third-order nonlinear BVP on the half-line, Chebfun, January 2020. https://www.chebfun.org/examples/ode-nonlin/GulfStream.html.
  • [11] J. López-Gómez, P. Omari, S. Rivetti, Positive solutions of a one-dimensional indefinite capillarity-type problem: a variational approach, J. Differential Equations 262 (2017) 2335–2392.
  • [12] R. Ma, T. Chen, H. Wang, Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions, J. Math. Anal. Appl. 443 (2016) 542–565. https://doi.org/10.1016/j.jmaa.2016.05.038.
  • [13] D. O’Regan, H. Wang, Positive radial solutions for p𝑝pitalic_p-Laplacian systems, Aequationes Math. 75 (2008) 43–50. https://doi.org/10.1007/s00010-007-2909-3.
  • [14] R. Precup, Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl. 352 (2009) 48–56. doi:10.1016/j.jmaa.2008.01.097.
  • [15] R. Precup, P. Pucci, C. Varga, Energy–based localization and multiplicity of radially symmetric states for the stationary p𝑝pitalic_p-Laplace diffusion, Complex Var. Elliptic Equ. 65 (2020) 1198–1209. https://doi.org/10.1080/17476933.2019.1574774.
  • [16] R. Precup, J. Rodriguez-Lopez, Positive radial solutions for Dirichlet problems via a Harnack type inequality, submitted.
  • [17] L. N. Trefethen, Computing numerically with functions instead of numbers, Math. Comput. Sci. 1 (2007) 9–19. https://doi.org/10.1007/s11786-007-0001-y.
  • [18] L. N. Trefethen, A. Birkisson, T. A. Driscoll, Exploring ODEs, SIAM, Philadelphia, 2018.
  • [19] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994) 1–7. https://doi.org/10.1006/jdeq.1994.1042.
2024

Related Posts