[1] Pope SB., The probability approach to the modelling of turbulent reacting flows. Combust Flame 1976; 27:299–312.
CrossRef (DOI)
[2] Pope SB., PDF methods for turbulent reactive flows. Prog Energy Combust Sci 1985;11(2):119–192.
CrossRef (DOI)
[3] Pope SB., Turbulent Flows. Cambridge: Cambridge University Press: 2000.
[4] Fox RO., Computational Models for Turbulent Reacting Flows. New York: Cambridge University Press; 2003.
[5] Haworth DC., Progress in probability density function methods for turbulent reacting flows. Prog Energy Combust Sci 2010; 36:168-259.
CrossRef (DOI)
[6] Haworth DC, Pope SB., Transported probability density function methods for Reynolds-averaged and large-eddy simulations. In: EchekkiT, Mastorakos E, editors. Turbulent combustion modeling. Fluid mechanics and its applications, vol. 95. Dordrecht: Springer; 2011. p.119–42.
CrossRef (DOI)
[7] Colucci PJ, Jaberi FA, Givi P., Filtered density function for large eddy simulation of turbulent reacting flows. PhysFluids 1998; 10(2):499–515.
CrossRef (DOI)
[8] Jaberi FA, Colucci PJ, James S, Givi P, Pope SB., Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 1999; 401:85–121.
CrossRef (DOI)
[9] McDermott R, Pope SB., A particle formulation for treating differential diffusion in filtered density function methods. J Comput Phys 2007; 226:947–993.
CrossRef (DOI)
[10] Heinz S., Unified turbulence models for LES and RANS, FDF and PDF simulations. Theor Comput Fluid Dyn 2007;21:99118.
CrossRef (DOI)
[11] Dodoulas IA, Navarro-Martinez S., Large eddy simulation of premixed turbulent flames unsing probability density approach. Flow Tur-bulence Combust 2013;90:645–678.
CrossRef (DOI)
[12] Schwede RL, Cirpka OA, Nowak W, Neuweiler I., Impact of sampling volume on the probability density function of steady state concentration. Water Resour Res 2008;44(12):W12433.
CrossRef (DOI)
[13] Sanchez-Vila X, Guadagnini A, Fernandez-Garcia D., Conditional probability density functions of concentrations for mixing-controlled reactive transport in heterogeneous aquifers. Math Geosci 2009;41:32351.
CrossRef (DOI)
[14] Dentz M, Tartakovsky DM., Probability density functions for passive scalars dispersed in random velocity fields. Geophys Res Lett 2010;37:L24406.
CrossRef (DOI)
[15] Meyer DW, Jenny P, Tchelepi HA., A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media. Water Resour Res 2010;46:W12522.
CrossRef (DOI)
[16] Cirpka OA, de Barros FPJ, Chiogna G, Nowak W., Probability density function of steady state concentration in two-dimensional heterogeneous porous media. Water Resour Res 2011;47:W11523.
CrossRef (DOI)
[17] Venturi D, Tartakovsky DM, Tartakovsky AM, Karniadakis GE., Exact PDF equations and closure approximations for advective reactive transport. J Comput Phys 2013;243:32343.
CrossRef (DOI)
[18] Suciu N., Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv Water Resour 2014;69:114–133.
CrossRef (DOI)
[19] Suciu N, Radu FA, Attinger S, Schuler L, Knabner P., A Fokker-Planck approach for probability distributions of species concentrations transported in heterogeneous media. J Comput Appl Math 2015;289:241–252.
CrossRef (DOI)
[20] Suciu N, Schuler L, Attinger S, Vamos¸ C, Knabner P., Consistency issues in PDF methods. An Sti U Ovid Co-Mat 2015;23(3):187–208.
CrossRef (DOI)
[21] Beckie R, Aldama AA, Wood EF., Modeling the large-scale dynamics of saturated groundwater flow using spatial filtering theory: 1.Theoretical development. Water Resour Res 1996;32(5):1269–1280.
CrossRef (DOI)
[22] Beckie, R, Aldama AA, Wood EF., Modeling the large-scale dynamics of saturated groundwater flow using spatial filtering theory: 2.Numerical Evaluation. Water Resour Res 1996;32(5):1281–1288.
CrossRef (DOI)
[23] Efendiev YR, Durlofsky LJ, Lee SH., Modeling of subgrid effects in coarse scale simulations of transport in heterogeneous porous media.Water Resour Res 2000;36:2031–2041.
CrossRef (DOI)
[24] Efendiev Y, Durlofsky LJ., A Generalized convection-diffusion model for subgrid transport in porous media. Multiscale Model Simul 2003;1(3):504–526.
CrossRef (DOI)
[25] Attinger S., Generalized Coarse Graining Procedures for Flow in Porous Media. Computational Geosciences 2003;7(4):253–273.
CrossRef (DOI)
[26] Heße F, Radu FA, Thullner M, Attinger S., Upscaling of the advection diffusion reaction equation with Monod reaction. Adv Water Resour2009;32:1336–1351.
CrossRef (DOI)
[27] Minier JP, Peirano E., The PDF approach to turbulent and polydispersed two-phase flows. Phys Rep 2001;352:1–214.
[28] Klimenko AY, Bilger RW., Conditional moment closure for turbulent combustion. Progr Energ Combust Sci 1999; 25:595–687.
CrossRef (DOI)
[29] Morales-Casique E, Neuman SP, Gaudagnini A., Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: theoretical framework. Adv Water Resour 2006;29:1238-1255.
CrossRef (DOI)
[30] Morales-Casique E, Neuman SP, Gaudagnini A., Nonlocal and localized analyses of nonreactive solute transport inbounded randomly heterogeneous porous media: computational analysis. Adv Water Resour 2006;29:1399–1418.
CrossRef (DOI)
[31] Pope SB., A Monte Carlo method for the PDF equations of turbulent reactive flow. Combustion Science and Technology 1981;25:159–174.
CrossRef (DOI)
[32] Mobus H, Gerlinger P, Brggemann D., Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames. Combust Flame 2001;124:519–534.
CrossRef (DOI)
[33] Jones WP, Marquis AJ, Prasad VN., LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust Flame 2012;159:3079–3095.
CrossRef (DOI)
[34] Valino L., A Field Monte Carlo Formulation for Calculating the Probability Density Function of a Single Scalar in a Turbulent Flow. Flow Turb Combust 1998;60(2):157–172.
CrossRef (DOI)
[35] Sabelnikov V, Soulard O., Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys Rev E 2005;72(1):016301.
CrossRef (DOI)
[36] Waclawczyk M, Pozorski J, Minier JP., New Molecular Transport Model for FDF/LES of Turbulence with Passive Scalar. Flow Turbulence Combust 2008;81:235–260.
CrossRef (DOI)
[37] Wang H, Popov PP, Pope SB., Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations. J Comput Phys 2010;229:1852–1878.
CrossRef (DOI)
[38] Kloeden PE, Platen E., Numerical solutions of stochastic differential equations. Berlin: Springer; 1999.
[39] Herz M., Mathematical modeling and analysis of electrolyte solutions. 2014; PhD thesis. http://www.mso.math.fau.de/fileadmin/am1/projects/PhD Herz.pdf.
[40] Rubin Y, Sun A, Maxwell R, Bellin A., The concept of block effective macrodispersivity and a unified approach for grid-scale and plume-scale-dependent transport. J Fluid Mech 1999;395:161–180.
CrossRef (DOI)
[41] de Barros FPJ, Rubin Y., Modelling of block-scale macrodispersion as a random function. J Fluid Mech 2011;676:514–545.
CrossRef (DOI)
[42] Bellin A, Tonina D., Probability density function of non-reactive solute concentration in heterogeneous porous formations, J. Contam. Hydrol. 2007;94:109–125.
CrossRef (DOI)
[43] Minier J-P, Chibbaro S, Pope SB., Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Phys Fluids 2014;26:113303.
CrossRef (DOI)
[44] Klimenko AY., On simulating scalar transport by mixing between Lagrangian particles. Phys Fluids 2007;19:031702.
CrossRef (DOI)
[45] Vamos¸ C, Suciu N, Vereecken H., Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput Phys 2003;186(2):52744.
CrossRef (DOI)
[46] Suciu N, Radu FA, Prechtel A, Brunner F, Knabner P., A coupled finite element-global random walk approach toadvection-dominated transport in porous media with random hydraulic conductivity. J Comput Appl Math 2013;24627–37.
CrossRef (DOI)
[47] Suciu N, Vamos¸ C, Vanderborght J, Hardelauf H, Vereecken H., Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour Res 2006;42:W04409.
CrossRef (DOI).
[48] Kraichnan RH., Diffusion by a random velocity field. Phys Fluids 1970;13(1):2231.
CrossRef (DOI)
[49] Vamos¸ C, Craciun M., Separation of components from a scale mixture of Gaussian white noises. Phys Rev E 2010;81:051125.
CrossRef (DOI)
[50] Suciu N, Vamos C., Ergodic estimations of upscaled coefficients for diffusion in random velocity fields. In: L’Ecuyer Pierre, Owen Art20 B, editors. Monte Carlo and quasi-Monte Carlo methods 2008. Berlin: Springer; 2009. p. 617-626.
CrossRef (DOI)
[51] Dagan G., Upscaling of dispersion coefficients in transport through heterogeneous porous formations. In: Peters A et al., editors. Computational Methods in Water Resources X. Norwell, Mass: Kluwer Acad; 1994. p. 431–439.
[52] Schwarze H, Jaekel U, Vereecken H., Estimation of Macrodispersion by Different Approximation Methods for Flow and Transport in Randomly Heterogeneous Media. Transport Porous Med 2001;43:265–287.
CrossRef (DOI)
[53] Dentz M, Kinzelbach H,Attinger S,Kinzelbach W., Temporal behavior of a solute cloud in a heterogeneous porous medium. 3. Numerical simulations. Water Resour Res 2002;38:1118.
CrossRef (DOI)
[54] Kurbanmuradov OA, Sabelfeld KK., Stochastic Flow Simulation and Particle Transport in a 2D Layer of Random Porous Medium Transp Porous Med 2010;85:347–373.
CrossRef (DOI)
[55] Heße F, Prykhodko V, Schlter S, Attinger S., Generating random fields with a truncated power-law variogram: A comparison of several numerical methods. Environ Model Software 2014;55:32–48.
CrossRef (DOI)
[56] Bronstein I.N, Semendjajew KA, Musiol G, Muhlig H., Taschenbuch der Mathematik. Frankfurt am Main: Verlag Harri Deutsch; 2006.